一、介绍
二、 原理与实现
2.1 Java7 中的实现
ConcurrentHashMap 采用了分段锁技术,其中 Segment 继承于 ReentrantLock(可重入锁)。不会像 HashTable 那样不管是 put 还是 get 操作都需要做同步处理,理论上 ConcurrentHashMap 支持 CurrencyLevel (Segment 数组数量)的线程并发。每当一个线程占用锁访问一个 Segment 时,不会影响到其他的 Segment。
- 数据结构图示

- 成员变量
//定义的常量//初始时默认容量static final int DEFAULT_INITIAL_CAPACITY = 16;//负载因子static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认的并发等级,static final int DEFAULT_CONCURRENCY_LEVEL = 16;//最大容量static final int MAXIMUM_CAPACITY = 1 << 30;//最小每个Segment持有table数量,必须是2的倍数static final int MIN_SEGMENT_TABLE_CAPACITY = 2;//Segment 数组最大容量 65536static final int MAX_SEGMENTS = 1 << 16;//不加锁进行检索的数量static final int RETRIES_BEFORE_LOCK = 2;//Segment 数组, 数组中的每个元素都持有HashEntry 桶final Segment<K,V>[] segments;transient Set<K> keySet;transient Set<Map.Entry<K,V>> entrySet;transient Collection<V> values;
- Segment 的源码实现
static final class Segment<K,V> extends ReentrantLock implements Serializable {private static final long serialVersionUID = 2249069246763182397L;static final int MAX_SCAN_RETRIES =Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;//存放数据的hash 桶transient volatile HashEntry<K,V>[] table;transient int count;transient int modCount;transient int threshold;final float loadFactor;Segment(float lf, int threshold, HashEntry<K,V>[] tab) {this.loadFactor = lf;this.threshold = threshold;this.table = tab;}}
- Entry 实现
static final class HashEntry<K,V> {final int hash; //hahs值final K key; //键volatile V value; //值volatile HashEntry<K,V> next; //后继指针HashEntry(int hash, K key, V value, HashEntry<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}}
- 构造函数
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (concurrencyLevel > MAX_SEGMENTS)concurrencyLevel = MAX_SEGMENTS;// Find power-of-two sizes best matching argumentsint sshift = 0; //sshift等于ssize从1向左移位的次数int ssize = 1; //Segment 数组的大小//为了能通过按位与的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方//(power-of-two size),所以必须计算出一个大于或等于concurrencyLevel的最小的2的N次方值//来作为segments数组的长度。while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;}//segmentShift用于定位参与散列运算的位数this.segmentShift = 32 - sshift;//segmentMask是散列运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1this.segmentMask = ssize - 1;if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;int c = initialCapacity / ssize;if (c * ssize < initialCapacity)++c;int cap = MIN_SEGMENT_TABLE_CAPACITY;while (cap < c)cap <<= 1;//创建 Segment,并放入Segment数组Segment<K,V> s0 =new Segment<K,V>(loadFactor, (int)(cap * loadFactor),(HashEntry<K,V>[])new HashEntry[cap]);Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]this.segments = ss;}
- get 方法
public V get(Object key) {Segment<K,V> s; // manually integrate access methods to reduce overheadHashEntry<K,V>[] tab;//对key 进行散列,得到hash值int h = hash(key);//计算出key 所在的segments数组下标long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&(tab = s.table) != null) {//遍历桶中的元素,找到key对应的的元素for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);e != null; e = e.next) {K k;if ((k = e.key) == key || (e.hash == h && key.equals(k)))return e.value;}}return null;}
get操作的高效之处在于整个get过程不需要加锁
- put 方法了解
public V put(K key, V value) {Segment<K,V> s;if (value == null)throw new NullPointerException();//对key 进行散列int hash = hash(key);//计算存放到哪个Segmentint j = (hash >>> segmentShift) & segmentMask;if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegments = ensureSegment(j);return s.put(key, hash, value, false);}
//如果不存在,创建Segment,并返回private Segment<K,V> ensureSegment(int k) {final Segment<K,V>[] ss = this.segments;long u = (k << SSHIFT) + SBASE; // raw offsetSegment<K,V> seg;if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {Segment<K,V> proto = ss[0]; // use segment 0 as prototypeint cap = proto.table.length;float lf = proto.loadFactor;int threshold = (int)(cap * lf);HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) { // recheckSegment<K,V> s = new Segment<K,V>(lf, threshold, tab);while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) {if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))break;}}}return seg;}
找到对应的Segment,执行put 方法
final V put(K key, int hash, V value, boolean onlyIfAbsent) {HashEntry<K,V> node = tryLock() ? null : //1scanAndLockForPut(key, hash, value); //2V oldValue;try {HashEntry<K,V>[] tab = table;int index = (tab.length - 1) & hash;HashEntry<K,V> first = entryAt(tab, index); //3for (HashEntry<K,V> e = first;;) {if (e != null) {K k;if ((k = e.key) == key ||(e.hash == hash && key.equals(k))) {//4oldValue = e.value;if (!onlyIfAbsent) {e.value = value;++modCount;}break;}e = e.next;}else {//5if (node != null)node.setNext(first);elsenode = new HashEntry<K,V>(hash, key, value, first);int c = count + 1;if (c > threshold && tab.length < MAXIMUM_CAPACITY)rehash(node);elsesetEntryAt(tab, index, node);++modCount;count = c;oldValue = null;break;}}} finally {unlock(); //6}return oldValue;}
- 首先第一步的时候会尝试获取锁: tryLock()
- 如果获取失败肯定就有其他线程存在竞争,则利用 scanAndLockForPut() 自旋获取锁。
- 将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。
- 遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value。
- 不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。
- 最后会解除在 1 中所获取当前 Segment 的锁。
- scanAndLockForPut方法
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {HashEntry<K,V> first = entryForHash(this, hash);HashEntry<K,V> e = first;HashEntry<K,V> node = null;int retries = -1; // negative while locating nodewhile (!tryLock()) { //1HashEntry<K,V> f; // to recheck first belowif (retries < 0) {if (e == null) {if (node == null) // speculatively create nodenode = new HashEntry<K,V>(hash, key, value, null);retries = 0;}else if (key.equals(e.key))retries = 0;elsee = e.next;}else if (++retries > MAX_SCAN_RETRIES) {//2lock();break;}else if ((retries & 1) == 0 &&(f = entryForHash(this, hash)) != first) {e = first = f; // re-traverse if entry changedretries = -1;}}return node;}
- 尝试自旋获取锁。
- 如果重试的次数达到了 MAX_SCAN_RETRIES 则改为阻塞锁获取,保证能获取成功。
- rehash方法
private void rehash(HashEntry<K,V> node) {HashEntry<K,V>[] oldTable = table;int oldCapacity = oldTable.length;int newCapacity = oldCapacity << 1; //1threshold = (int)(newCapacity * loadFactor);HashEntry<K,V>[] newTable =(HashEntry<K,V>[]) new HashEntry[newCapacity];int sizeMask = newCapacity - 1;for (int i = 0; i < oldCapacity ; i++) {HashEntry<K,V> e = oldTable[i];if (e != null) {HashEntry<K,V> next = e.next;int idx = e.hash & sizeMask;if (next == null) // Single node on list //2newTable[idx] = e;else { // Reuse consecutive sequence at same slot //3HashEntry<K,V> lastRun = e;int lastIdx = idx;for (HashEntry<K,V> last = next;last != null;last = last.next) {int k = last.hash & sizeMask;if (k != lastIdx) {lastIdx = k;lastRun = last;}}newTable[lastIdx] = lastRun;// Clone remaining nodesfor (HashEntry<K,V> p = e; p != lastRun; p = p.next) {V v = p.value;int h = p.hash;int k = h & sizeMask;HashEntry<K,V> n = newTable[k];newTable[k] = new HashEntry<K,V>(h, p.key, v, n);}}}}int nodeIndex = node.hash & sizeMask; // add the new nodenode.setNext(newTable[nodeIndex]);newTable[nodeIndex] = node;table = newTable;}
- 计算新的容量为旧容量的2倍
- 遍历旧HashEntry桶,如果当前HashEntry只用一个节点,直接放到新的HashEntry桶中
- 如果当前HashEntry是链表,则遍历链表,重新计算下标放到新的HashEntry桶中
2.2、 Java8 中的实现
- 数据结构图示
抛弃了原有的 Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。结构上也引入了红黑树,防止查询效率退化为O(N)
- Node类与Java7 HashEntry类似
static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;volatile V val; //volatile保证可见性volatile Node<K,V> next;Node(int hash, K key, V val, Node<K,V> next) {this.hash = hash;this.key = key;this.val = val;this.next = next;}}
- get方法
public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;int h = spread(key.hashCode());if ((tab = table) != null && (n = tab.length) > 0 &&(e = tabAt(tab, (n - 1) & h)) != null) {//根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值。if ((eh = e.hash) == h) {if ((ek = e.key) == key || (ek != null && key.equals(ek)))return e.val;}else if (eh < 0)//如果是红黑树那就按照树的方式获取值。return (p = e.find(h, key)) != null ? p.val : null;while ((e = e.next) != null) { 就不满足那就按照链表的方式遍历获取值。if (e.hash == h &&((ek = e.key) == key || (ek != null && key.equals(ek))))return e.val;}}return null;}
- put 方法
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh;//如果桶为空,初始化if (tab == null || (n = tab.length) == 0)tab = initTable();else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//采用CAS无锁put入新的元素,成功返回//失败自旋if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))break; // no lock when adding to empty bin}//如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else {//如果都不满足,则利用 synchronized 锁写入数据。V oldVal = null;synchronized (f) {if (tabAt(tab, i) == f) {if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key,value, null);break;}}}else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}}if (binCount != 0) {//如果达到需要转换为红黑树的阀值 TREEIFY_THRESHOLD = 8if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);//将链表转换为红黑树if (oldVal != null)return oldVal;break;}}}addCount(1L, binCount);return null;}
