一、ConcurrentHashMap
1.1 Java7 中的实现
ConcurrentHashMap 采用了分段锁技术,其中 Segment 继承于 ReentrantLock(可重入锁)。不会像 HashTable 那样不管是 put 还是 get 操作都需要做同步处理,理论上 ConcurrentHashMap 支持 CurrencyLevel (Segment 数组数量)的线程并发。每当一个线程占用锁访问一个 Segment 时,不会影响到其他的 Segment。
- 数据结构图示

- 成员变量
//定义的常量//初始时默认容量static final int DEFAULT_INITIAL_CAPACITY = 16;//负载因子static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认的并发等级,static final int DEFAULT_CONCURRENCY_LEVEL = 16;//最大容量static final int MAXIMUM_CAPACITY = 1 << 30;//最小每个Segment持有table数量,必须是2的倍数static final int MIN_SEGMENT_TABLE_CAPACITY = 2;//Segment 数组最大容量 65536static final int MAX_SEGMENTS = 1 << 16;//不加锁进行检索的数量static final int RETRIES_BEFORE_LOCK = 2;//Segment 数组, 数组中的每个元素都持有HashEntry 桶final Segment<K,V>[] segments;transient Set<K> keySet;transient Set<Map.Entry<K,V>> entrySet;transient Collection<V> values;
- Segment 的源码实现
static final class Segment<K,V> extends ReentrantLock implements Serializable {private static final long serialVersionUID = 2249069246763182397L;static final int MAX_SCAN_RETRIES =Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;//存放数据的hash 桶transient volatile HashEntry<K,V>[] table;transient int count;transient int modCount;transient int threshold;final float loadFactor;Segment(float lf, int threshold, HashEntry<K,V>[] tab) {this.loadFactor = lf;this.threshold = threshold;this.table = tab;}}
Entry 实现
static final class HashEntry<K,V> {final int hash; //hahs值final K key; //键volatile V value; //值volatile HashEntry<K,V> next; //后继指针HashEntry(int hash, K key, V value, HashEntry<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}}
构造函数
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (concurrencyLevel > MAX_SEGMENTS)concurrencyLevel = MAX_SEGMENTS;// Find power-of-two sizes best matching argumentsint sshift = 0; //sshift等于ssize从1向左移位的次数int ssize = 1; //Segment 数组的大小//为了能通过按位与的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方//(power-of-two size),所以必须计算出一个大于或等于concurrencyLevel的最小的2的N次方值//来作为segments数组的长度。while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;}//segmentShift用于定位参与散列运算的位数this.segmentShift = 32 - sshift;//segmentMask是散列运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1this.segmentMask = ssize - 1;if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;int c = initialCapacity / ssize;if (c * ssize < initialCapacity)++c;int cap = MIN_SEGMENT_TABLE_CAPACITY;while (cap < c)cap <<= 1;//创建 Segment,并放入Segment数组Segment<K,V> s0 =new Segment<K,V>(loadFactor, (int)(cap * loadFactor),(HashEntry<K,V>[])new HashEntry[cap]);Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]this.segments = ss;}
get 方法
public V get(Object key) {Segment<K,V> s; // manually integrate access methods to reduce overheadHashEntry<K,V>[] tab;//对key 进行散列,得到hash值int h = hash(key);//计算出key 所在的segments数组下标long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&(tab = s.table) != null) {//遍历桶中的元素,找到key对应的的元素for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);e != null; e = e.next) {K k;if ((k = e.key) == key || (e.hash == h && key.equals(k)))return e.value;}}return null;}
get操作的高效之处在于整个get过程不需要加锁
- put 方法了解
public V put(K key, V value) {Segment<K,V> s;if (value == null)throw new NullPointerException();//对key 进行散列int hash = hash(key);//计算存放到哪个Segmentint j = (hash >>> segmentShift) & segmentMask;if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegments = ensureSegment(j);return s.put(key, hash, value, false);}
//如果不存在,创建Segment,并返回private Segment<K,V> ensureSegment(int k) {final Segment<K,V>[] ss = this.segments;long u = (k << SSHIFT) + SBASE; // raw offsetSegment<K,V> seg;if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {Segment<K,V> proto = ss[0]; // use segment 0 as prototypeint cap = proto.table.length;float lf = proto.loadFactor;int threshold = (int)(cap * lf);HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) { // recheckSegment<K,V> s = new Segment<K,V>(lf, threshold, tab);while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) {if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))break;}}}return seg;}
找到对应的Segment,执行put 方法
final V put(K key, int hash, V value, boolean onlyIfAbsent) {HashEntry<K,V> node = tryLock() ? null : //1scanAndLockForPut(key, hash, value); //2V oldValue;try {HashEntry<K,V>[] tab = table;int index = (tab.length - 1) & hash;HashEntry<K,V> first = entryAt(tab, index); //3for (HashEntry<K,V> e = first;;) {if (e != null) {K k;if ((k = e.key) == key ||(e.hash == hash && key.equals(k))) {//4oldValue = e.value;if (!onlyIfAbsent) {e.value = value;++modCount;}break;}e = e.next;}else {//5if (node != null)node.setNext(first);elsenode = new HashEntry<K,V>(hash, key, value, first);int c = count + 1;if (c > threshold && tab.length < MAXIMUM_CAPACITY)rehash(node);elsesetEntryAt(tab, index, node);++modCount;count = c;oldValue = null;break;}}} finally {unlock(); //6}return oldValue;}
- 首先第一步的时候会尝试获取锁: tryLock()
- 如果获取失败肯定就有其他线程存在竞争,则利用 scanAndLockForPut() 自旋获取锁。
- 将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。
- 遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value。
- 不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。
- 最后会解除在 1 中所获取当前 Segment 的锁。
- scanAndLockForPut方法
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {HashEntry<K,V> first = entryForHash(this, hash);HashEntry<K,V> e = first;HashEntry<K,V> node = null;int retries = -1; // negative while locating nodewhile (!tryLock()) { //1HashEntry<K,V> f; // to recheck first belowif (retries < 0) {if (e == null) {if (node == null) // speculatively create nodenode = new HashEntry<K,V>(hash, key, value, null);retries = 0;}else if (key.equals(e.key))retries = 0;elsee = e.next;}else if (++retries > MAX_SCAN_RETRIES) {//2lock();break;}else if ((retries & 1) == 0 &&(f = entryForHash(this, hash)) != first) {e = first = f; // re-traverse if entry changedretries = -1;}}return node;}
- 尝试自旋获取锁。
- 如果重试的次数达到了 MAX_SCAN_RETRIES 则改为阻塞锁获取,保证能获取成功。
- rehash方法
private void rehash(HashEntry<K,V> node) {HashEntry<K,V>[] oldTable = table;int oldCapacity = oldTable.length;int newCapacity = oldCapacity << 1; //1threshold = (int)(newCapacity * loadFactor);HashEntry<K,V>[] newTable =(HashEntry<K,V>[]) new HashEntry[newCapacity];int sizeMask = newCapacity - 1;for (int i = 0; i < oldCapacity ; i++) {HashEntry<K,V> e = oldTable[i];if (e != null) {HashEntry<K,V> next = e.next;int idx = e.hash & sizeMask;if (next == null) // Single node on list //2newTable[idx] = e;else { // Reuse consecutive sequence at same slot //3HashEntry<K,V> lastRun = e;int lastIdx = idx;for (HashEntry<K,V> last = next;last != null;last = last.next) {int k = last.hash & sizeMask;if (k != lastIdx) {lastIdx = k;lastRun = last;}}newTable[lastIdx] = lastRun;// Clone remaining nodesfor (HashEntry<K,V> p = e; p != lastRun; p = p.next) {V v = p.value;int h = p.hash;int k = h & sizeMask;HashEntry<K,V> n = newTable[k];newTable[k] = new HashEntry<K,V>(h, p.key, v, n);}}}}int nodeIndex = node.hash & sizeMask; // add the new nodenode.setNext(newTable[nodeIndex]);newTable[nodeIndex] = node;table = newTable;}
- 计算新的容量为旧容量的2倍
- 遍历旧HashEntry桶,如果当前HashEntry只用一个节点,直接放到新的HashEntry桶中
- 如果当前HashEntry是链表,则遍历链表,重新计算下标放到新的HashEntry桶中
1.2 Java8 中的实现
- 数据结构图示
抛弃了原有的 Segment 分段锁,而采用了 CAS + synchronized 来保证并发安全性。结构上也引入了红黑树,防止查询效率退化为O(N)
Node类与Java7 HashEntry类似
static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;volatile V val; //volatile保证可见性volatile Node<K,V> next;Node(int hash, K key, V val, Node<K,V> next) {this.hash = hash;this.key = key;this.val = val;this.next = next;}}
get方法
public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;int h = spread(key.hashCode());if ((tab = table) != null && (n = tab.length) > 0 &&(e = tabAt(tab, (n - 1) & h)) != null) {//根据计算出来的 hashcode 寻址,如果就在桶上那么直接返回值。if ((eh = e.hash) == h) {if ((ek = e.key) == key || (ek != null && key.equals(ek)))return e.val;}else if (eh < 0)//如果是红黑树那就按照树的方式获取值。return (p = e.find(h, key)) != null ? p.val : null;while ((e = e.next) != null) { 就不满足那就按照链表的方式遍历获取值。if (e.hash == h &&((ek = e.key) == key || (ek != null && key.equals(ek))))return e.val;}}return null;}
- put 方法
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh;//如果桶为空,初始化if (tab == null || (n = tab.length) == 0)tab = initTable();else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//采用CAS无锁put入新的元素,成功返回//失败自旋if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))break; // no lock when adding to empty bin}//如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else {//如果都不满足,则利用 synchronized 锁写入数据。V oldVal = null;synchronized (f) {if (tabAt(tab, i) == f) {if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key,value, null);break;}}}else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}}if (binCount != 0) {//如果达到需要转换为红黑树的阀值 TREEIFY_THRESHOLD = 8if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);//将链表转换为红黑树if (oldVal != null)return oldVal;break;}}}addCount(1L, binCount);return null;}
二、 CopyOnWriteArrayList
基于Java8 了解源码实现
原理: 采用读写分离的思想实现并发访问, 而且保证读读之间在任何时候都不会被阻塞。
缺点:
- 内存占用问题
- 数据一致性问题
2.1 内部成员
//可重入锁final transient ReentrantLock lock = new ReentrantLock();//数组 volatile:保证可见性,private transient volatile Object[] array;//弱一致性的迭代器static final class COWIterator<E> implements ListIterator<E>// 反射机制 Unsafe类private static final sun.misc.Unsafe UNSAFE;// lock域的内存偏移量private static final long lockOffset;static {try {//实例化Unsafe类UNSAFE = sun.misc.Unsafe.getUnsafe();Class<?> k = CopyOnWriteArrayList.class;//锁的偏移量lockOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("lock"));} catch (Exception e) {throw new Error(e);}}
2.2 构造方法
public CopyOnWriteArrayList() {setArray(new Object[0]); //初始化长度为0 的数组}public CopyOnWriteArrayList(Collection<? extends E> c) {Object[] elements;if (c.getClass() == CopyOnWriteArrayList.class)elements = ((CopyOnWriteArrayList<?>)c).getArray();else {elements = c.toArray();// c.toArray might (incorrectly) not return Object[] (see 6260652)if (elements.getClass() != Object[].class)elements = Arrays.copyOf(elements, elements.length, Object[].class);}setArray(elements);}public CopyOnWriteArrayList(E[] toCopyIn) {setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));}
2.3 get方法
//volatile 修饰数组引用,保证可见性private transient volatile Object[] array;final Object[] getArray() {return array;}public E get(int index) {return get(getArray(), index);}@SuppressWarnings("unchecked")private E get(Object[] a, int index) {return (E) a[index]; //通过下标获取数组元素, 没有做任何加锁操作}
2.4 add 方法
public boolean add(E e) {final ReentrantLock lock = this.lock;lock.lock(); //获取锁try {//获取原数组Object[] elements = getArray();int len = elements.length;//拷贝原数组到新的新数组Object[] newElements = Arrays.copyOf(elements, len + 1);//操作新的数组newElements[len] = e;//将旧数组引用指向新的数组setArray(newElements);return true;} finally {lock.unlock(); //释放锁}}
三、阻塞队列BlockingQueue
原理:采用等待通知机制实现, 底层采用可重入锁和Condition实现
3.1 JDK 中的阻塞队列实现
- ArrayBlockingQueue 一个由数组结构组成的有界阻塞队列。
- LinkedBlockingQueue 一个由链表结构组成的有界阻塞队列。
- PriorityBlockingQueue 一个支持优先级排序的无界优先级阻塞队列。
- DelayQueue:一个使用优先级队列实现的无界延迟阻塞队列。
- SynchronousQueue 一个不存储元素的阻塞队列。
- LinkedTransferQueue 一个由链表结构组成的无界阻塞队列。
- LinkedBlockingDeque 一个由链表结构组成的双向阻塞队列。
3.2 对ArrayBlockingQueue 进行分析(Java8)
3.2.1 成员变量
//队列容器数组final Object[] items;/** items index for next take, poll, peek or remove */int takeIndex;/** items index for next put, offer, or add */int putIndex;//队列元素个数int count;//可重入锁final ReentrantLock lock;//队列条件锁(队列挂起出队列线程)private final Condition notEmpty;//队列条件锁(队列挂起入队列线程)private final Condition notFull;
3.2.2 构造函数
//capacity 容量//fair 是否公平访问队列:()//true 在插入和删除操作中会阻塞线程,按照FIFO的顺序执行访问,//false 线程访问顺序不确定public ArrayBlockingQueue(int capacity, boolean fair) {if (capacity <= 0)throw new IllegalArgumentException();this.items = new Object[capacity];lock = new ReentrantLock(fair);notEmpty = lock.newCondition();notFull = lock.newCondition();}public ArrayBlockingQueue(int capacity, boolean fair,Collection<? extends E> c) {this(capacity, fair);final ReentrantLock lock = this.lock;lock.lock(); // Lock only for visibility, not mutual exclusiontry {int i = 0;try {for (E e : c) {checkNotNull(e);items[i++] = e;}} catch (ArrayIndexOutOfBoundsException ex) {throw new IllegalArgumentException();}count = i;putIndex = (i == capacity) ? 0 : i;} finally {lock.unlock();}}
3.2.3 入队列
//入队列,队列已满返回falsepublic boolean offer(E e) {checkNotNull(e); //检查元素是否为空final ReentrantLock lock = this.lock;lock.lock();//获取锁try {if (count == items.length) //如果队列已满,返回falsereturn false;else {enqueue(e);//添加元素到队列尾部return true;}} finally {lock.unlock();//释放锁}}//入队列,已满的挂起线程等待public void put(E e) throws InterruptedException {checkNotNull(e);final ReentrantLock lock = this.lock;lock.lockInterruptibly(); //获取锁,可打断try {while (count == items.length) //如果队列已满,挂起线程,释放锁notFull.await();enqueue(e);//入队列} finally {lock.unlock();//释放锁}}//入队列,可设置超时public boolean offer(E e, long timeout, TimeUnit unit)throws InterruptedException {checkNotNull(e);long nanos = unit.toNanos(timeout);//超时时间final ReentrantLock lock = this.lock;lock.lockInterruptibly();//获取锁,可打断try {while (count == items.length) {if (nanos <= 0)return false;nanos = notFull.awaitNanos(nanos);等待超时挂起线程, 释放锁}enqueue(e);return true;} finally {lock.unlock();}}//入队列private void enqueue(E x) {// assert lock.getHoldCount() == 1;// assert items[putIndex] == null;final Object[] items = this.items;items[putIndex] = x;if (++putIndex == items.length)putIndex = 0;count++;notEmpty.signal(); //唤醒takes线程}
3.2.4 出队列
//出队列public E poll() {final ReentrantLock lock = this.lock;lock.lock();try {return (count == 0) ? null : dequeue();} finally {lock.unlock();}}public E take() throws InterruptedException {final ReentrantLock lock = this.lock;lock.lockInterruptibly();try {while (count == 0)notEmpty.await(); //队列为空,挂起线程return dequeue();} finally {lock.unlock();}}//超时出队列public E poll(long timeout, TimeUnit unit) throws InterruptedException {long nanos = unit.toNanos(timeout);final ReentrantLock lock = this.lock;lock.lockInterruptibly();try {while (count == 0) {if (nanos <= 0)return null;nanos = notEmpty.awaitNanos(nanos);//队列为空,超时挂起线程}return dequeue();} finally {lock.unlock();}}//出队列具体逻辑private E dequeue() {// assert lock.getHoldCount() == 1;// assert items[takeIndex] != null;final Object[] items = this.items;@SuppressWarnings("unchecked")E x = (E) items[takeIndex];//获取元素items[takeIndex] = null; //置空,帮助GCif (++takeIndex == items.length)takeIndex = 0;count--;if (itrs != null)itrs.elementDequeued(); //通知迭代器更新状态notFull.signal();//唤醒put线程return x;}
四、高效读写队列 ConcurrentLinkedQueue(未完成)
ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部;当我们获取一个元素时,它会返回队列头部的元素。它采用了“wait-free”算法(即CAS算法)来实现,该算法在Michael&Scott算法上进行了一些修改。
注意:
- 该队列不支持存储空值
4.1 成员变量
//头节点private transient volatile Node<E> head;//尾节点private transient volatile Node<E> tail;//节点类private static class Node<E> {volatile E item;volatile Node<E> next;// Unsafe mechanicsprivate static final sun.misc.Unsafe UNSAFE;private static final long itemOffset;private static final long nextOffset;static {try {UNSAFE = sun.misc.Unsafe.getUnsafe();Class<?> k = Node.class;itemOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("item"));nextOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("next"));} catch (Exception e) {throw new Error(e);}}}
4.2 入队列 无锁实现
public boolean offer(E e) {checkNotNull(e);final Node<E> newNode = new Node<E>(e);for (Node<E> t = tail, p = t;;) {//从尾节点插入Node<E> q = p.next;if (q == null) { //如果p节点的后继指针为空, 则p为队列的尾节点// p is last nodeif (p.casNext(null, newNode)) {//把新节点加入队列的尾部// Successful CAS is the linearization point// for e to become an element of this queue,// and for newNode to become "live".if (p != t) // hop two nodes at a timecasTail(t, newNode); // Failure is OK.//设置尾节点return true;}// Lost CAS race to another thread; re-read next}else if (p == q)// We have fallen off list. If tail is unchanged, it// will also be off-list, in which case we need to// jump to head, from which all live nodes are always// reachable. Else the new tail is a better bet.p = (t != (t = tail)) ? t : head;else// Check for tail updates after two hops.p = (p != t && t != (t = tail)) ? t : q;}}
4.3 出队列实现
public E poll() {restartFromHead:for (;;) {for (Node<E> h = head, p = h, q;;) {E item = p.item;if (item != null && p.casItem(item, null)) {// Successful CAS is the linearization point// for item to be removed from this queue.if (p != h) // hop two nodes at a timeupdateHead(h, ((q = p.next) != null) ? q : p);return item;}else if ((q = p.next) == null) {updateHead(h, p);return null;}else if (p == q)continue restartFromHead;elsep = q;}}}
五、随机数据结构:跳表(SkipList)
5.1 跳跃表了解
跳跃表(skiplist)是一种随机化的数据结构, 在 1989 年由 William Pugh 在论文《Skip lists: a probabilistic alternative to balanced trees》中提出, 跳跃表以有序的方式在层次化的链表中保存元素,搜索、插入和删除的时间复杂度为O(logN)
- 图示(WiKi)

5.2 Java 实现简单的SkipList
- 定义SkipList 的节点 ```java /**
- 节点类 */ class Node { //数据域 int key; //forward 数组,用于保存不同层级的指针 Node[] forwards; //节点最大等级 int maxLevel = MAX_LEVEL; } ```
- 使用随机数算法决定新增节点的高度 ```java /**
- 定义最大层级 / private final static int MAX_LEVEL = 16; /*
- 随机选择节点作为索引的概率, 这里取50% / private final static float P = 0.5f; /*
- 随机等级算法 *
- @return 返回随机层数
*/
private int randomLevel() {
int level = 1;
while (Math.random() < P && level < MAX_LEVEL) {
} return level; } ```level++;
- 跳表的插入实现
基本思路:我们将会从跳表的最高等级开始比较当前节点(一般会定义一个头节点)的下一个节点的key 与将要插入的key
- 如果下一个节点的key 小于将要插入节点的key,继续在同一层等级中遍历下一个节点
- 如果下一个节点的key 大于将要插入节点的key, 保存当前节点i 到数组update[i] 中,向下移一个等级继续遍历
- 插入图示(WIKI)

- Java 代码实现
5.3 并发容器 ConcurrentSkipListMap
参考
- https://crossoverjie.top/2018/07/23/java-senior/ConcurrentHashMap/
- Java 并发编程的艺术
- https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CopyOnWriteArrayList.html
- http://ifeve.com/java-copy-on-write/
- https://juejin.im/post/5aeeb55f5188256715478c21
- concurrentlinkedqueue原理探究
- https://blog.csdn.net/qq_38293564/article/details/80798310
- https://zhuanlan.zhihu.com/p/53975333
- https://github.com/wangzheng0822/algo/blob/master/java/17_skiplist/SkipList.java
- https://blog.csdn.net/bohu83/article/details/83654524
- https://www.geeksforgeeks.org/skip-list-set-2-insertion/
