1 Lenet5模型简介
2 TensorFlow实现
mnist_lenet5_forward.py文件
import tensorflow as tf# 每张图片分辨率为28*28IMAGE_SIZE = 28# Mnist数据集为灰度图,故输入图片通道数NUM_CHANNELS取值为1NUM_CHANNELS = 1# 第一层卷积核大小为5CONV1_SIZE = 5# 卷积核个数为32CONV1_KERNEL_NUM = 32# 第二层卷积核大小为5CONV2_SIZE = 5# 卷积核个数为64CONV2_KERNEL_NUM = 64# 全连接层第一层为 512 个神经元FC_SIZE = 512# 全连接层第二层为 10 个神经元OUTPUT_NODE = 10# 权重w计算def get_weight(shape, regularizer): w = tf.Variable(tf.truncated_normal(shape, stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) return w# 偏置b计算def get_bias(shape): b = tf.Variable(tf.zeros(shape)) return b# 卷积层计算def conv2d(x, w): return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')# 最大池化层计算def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')def forward(x, train, regularizer): # 实现第一层卷积 conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer) conv1_b = get_bias([CONV1_KERNEL_NUM]) conv1 = conv2d(x, conv1_w) # 非线性激活 relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b)) # 最大池化 pool1 = max_pool_2x2(relu1) # 实现第二层卷积 conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM], regularizer) conv2_b = get_bias([CONV2_KERNEL_NUM]) conv2 = conv2d(pool1, conv2_w) relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b)) pool2 = max_pool_2x2(relu2) # 获取一个张量的维度 pool_shape = pool2.get_shape().as_list() # pool_shape[1] 为长 pool_shape[2] 为宽 pool_shape[3]为高 nodes = pool_shape[1] * pool_shape[2] * pool_shape[3] # 得到矩阵被拉长后的长度,pool_shape[0]为batch值 reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) # 实现第三层全连接层 fc1_w = get_weight([nodes, FC_SIZE], regularizer) fc1_b = get_bias([FC_SIZE]) fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_w) + fc1_b) # 如果是训练阶段,则对该层输出使用dropout if train: fc1 = tf.nn.dropout(fc1, 0.5) # 实现第四层全连接层 fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer) fc2_b = get_bias([OUTPUT_NODE]) y = tf.matmul(fc1, fc2_w) + fc2_b return y
mnist_lenet5_backward.py文件
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport mnist_lenet5_forwardimport osimport numpy as np# batch的数量BATCH_SIZE = 100# 初始学习率LEARNING_RATE_BASE = 0.005# 学习率衰减率LEARNING_RATE_DECAY = 0.99# 正则化REGULARIZER = 0.0001# 最大迭代次数STEPS = 50000# 滑动平均衰减率MOVING_AVERAGE_DECAY = 0.99# 模型保存路径MODEL_SAVE_PATH = "./model/"# 模型名称MODEL_NAME = "mnist_model"def backward(mnist): # 卷积层输入为四阶张量 # 第一阶表示每轮喂入的图片数量,第二阶和第三阶分别表示图片的行分辨率和列分辨率,第四阶表示通道数 x = tf.placeholder(tf.float32, [ BATCH_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS]) y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE]) # 前向传播过程 y = mnist_lenet5_forward.forward(x, True, REGULARIZER) # 声明一个全局计数器 global_step = tf.Variable(0, trainable=False) # 对网络最后一层的输出y做softmax,求取输出属于某一类的概率 ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) # 向量求均值 cem = tf.reduce_mean(ce) # 正则化的损失值 loss = cem + tf.add_n(tf.get_collection('losses')) # 指数衰减学习率 learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True) # 梯度下降算法的优化器 # train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) train_step = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(loss, global_step=global_step) # 采用滑动平均的方法更新参数 ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) ema_op = ema.apply(tf.trainable_variables()) # 将train_step和ema_op两个训练操作绑定到train_op上 with tf.control_dependencies([train_step, ema_op]): train_op = tf.no_op(name='train') # 实例化一个保存和恢复变量的saver saver = tf.train.Saver() # 创建一个会话 with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) # 通过 checkpoint 文件定位到最新保存的模型,若文件存在,则加载最新的模型 ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) for i in range(STEPS): # 读取一个batch数据,将输入数据xs转成与网络输入相同形状的矩阵 xs, ys = mnist.train.next_batch(BATCH_SIZE) reshaped_xs = np.reshape(xs, ( BATCH_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS)) # 读取一个batch数据,将输入数据xs转成与网络输入相同形状的矩阵 _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys}) if i % 100 == 0: print("After %d training step(s), loss on training batch is %g." % (step, loss_value)) saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)def main(): mnist = input_data.read_data_sets("./data/", one_hot=True) backward(mnist)if __name__ == '__main__': main()
mnist_lenet5_test.py文件
import timeimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport mnist_lenet5_forwardimport mnist_lenet5_backwardimport numpy as npTEST_INTERVAL_SECS = 5#创建一个默认图,在该图中执行以下操作def test(mnist): with tf.Graph().as_default() as g: x = tf.placeholder(tf.float32,[ mnist.test.num_examples, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS]) y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE]) #训练好的网络,故不使用 dropout y = mnist_lenet5_forward.forward(x,False,None) ema = tf.train.ExponentialMovingAverage(mnist_lenet5_backward.MOVING_AVERAGE_DECAY) ema_restore = ema.variables_to_restore() saver = tf.train.Saver(ema_restore) #判断预测值和实际值是否相同 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) ## 求平均得到准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) while True: with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(mnist_lenet5_backward.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) # 根据读入的模型名字切分出该模型是属于迭代了多少次保存的 global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] reshaped_x = np.reshape(mnist.test.images,( mnist.test.num_examples, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.IMAGE_SIZE, mnist_lenet5_forward.NUM_CHANNELS)) #利用多线程提高图片和标签的批获取效率 coord = tf.train.Coordinator()#3 threads = tf.train.start_queue_runners(sess=sess, coord=coord)#4 accuracy_score = sess.run(accuracy, feed_dict={x:reshaped_x,y_:mnist.test.labels}) print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score)) #关闭线程协调器 coord.request_stop()#6 coord.join(threads)#7 else: print('No checkpoint file found') return time.sleep(TEST_INTERVAL_SECS) def main(): mnist = input_data.read_data_sets("./data/", one_hot=True) test(mnist)if __name__ == '__main__': main()