1. 简介
我们知道 HashMap 不是线程安全的,HashTable 中的所有方法都是加了 synchronized ,在高并发情况下的性能比较低。还有一种方式 通过 Collections 的 Map<K,V> synchronizedMap(Map<K,V> m) 将 hashMap 包装成一个线程安全的 map。比如 SynchronzedMap 的 put 方法源码为:
public V put(K key, V value) {synchronized (mutex) {return m.put(key, value);}}
ConcurrentHashMap 就是线程安全的 map,其中利用了锁分段的思想提高了并发度。
JDK 1.6 版本关键要素:
- segment 继承了 ReentrantLock 充当锁的角色,为每一个 segment 提供了线程安全的保障;
- segment 维护了哈希散列表的若干个桶,每个桶由 HashEntry 构成的链表。
JDK 1.8 版本关键要素
- 舍弃了 segment,并且大量使用了
synchronized,以及CAS无锁操作以保证 ConcurrentHashMap 操作的线程安全性。 - 至于为什么不用 ReentrantLock 而是 Synchronzied 呢?实际上,synchronzied 做了很多的优化,包括偏向锁,轻量级锁,重量级锁,可以依次向上升级锁状态,但不能降级。因此,使用 synchronized 相较于 ReentrantLock 的性能会持平甚至在某些情况更优。
- 底层数据结构改变为采用
**数组+链表+红黑树**的数据形式。
2. 关键属性及类
2.1 ConcurrentHashMap 的关键属性
- table:
**transient volatile Node<K,V>[] table;**- 装载 Node 的数组,作为 ConcurrentHashMap 的数据容器,采用懒加载的方式,直到第一次插入数据的时候才会进行初始化操作,数组的大小总是为 2 的幂次方。
- nextTable:
transient volatile Node<K,V>[] nextTable;- 扩容时使用,平时为 null,只有在扩容的时候才为非 null
- sizeCtl:
**transient volatile int sizeCtl;**
- 该属性用来控制 table 数组的大小,根据是否初始化和是否正在扩容有几种情况:
- 当值为负数时:
- 如果为
-1表示正在初始化 - 如果为
-N则表示当前正有N-1个线程进行扩容操作;
- 如果为
- 当值为正数时:
- 如果当前数组为
null的话表示 table 在初始化过程中,sizeCtl表示为需要新建数组的长度; - 若已经初始化了,表示当前数据容器(table 数组)可用容量也可以理解成临界值(插入节点数超过了该临界值就需要扩容),具体指为数组的长度 n 乘以 加载因子 loadFactor;
- 当值为 0 时,即数组长度为默认初始值。
- 如果当前数组为
- 当值为负数时:
- Unsafe.u:
static final sun.misc.Unsafe U;U.compareAndSwapXXXX的方法利用了 CAS 算法保证了线程安全性,这是一种乐观策略,假设每一次操作都不会产生冲突,当且仅当冲突发生的时候再去尝试。- 而 CAS 操作依赖于现代处理器指令集,通过底层 CMPXCHG 指令实现。
- CAS(V,O,N)核心思想为:若当前变量实际值 V 与期望的旧值 O 相同,则表明该变量没被其他线程进行修改,因此可以安全的将新值 N 赋值给变量;若当前变量实际值 V 与期望的旧值 O 不相同,则表明该变量已经被其他线程做了处理,此时将新值N赋给变量操作就是不安全的,再进行重试。而在大量的同步组件和并发容器的实现中使用CAS是通过
sun.misc.Unsafe类实现的,该类提供了一些可以直接操控内存和线程的底层操作。该成员变量的获取是在静态代码块中:
static {try {U = sun.misc.Unsafe.getUnsafe();.......} catch (Exception e) {throw new Error(e);}}
2.2 ConcurrentHashMap 中关键内部类
Node 类实现了
Map.Entry接口,主要存放 key-value 键值对,并且具有 next 域static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;volatile V val;volatile Node<K,V> next;......}
另外可以看出很多属性都是用 volatile 进行修饰的,也就是为了保证内存可见性。
TreeNode 树节点,继承于承载数据的 Node 类。而红黑树的操作是针对 TreeBin 类的,从该类的注释也可以看出,也就是 TreeBin 会将 TreeNode 进行再一次封装
*** Nodes for use in TreeBins*/static final class TreeNode<K,V> extends Node<K,V> {TreeNode<K,V> parent; // red-black tree linksTreeNode<K,V> left;TreeNode<K,V> right;TreeNode<K,V> prev; // needed to unlink next upon deletionboolean red;......}
TreeBin 这个类并不负责包装用户的 key、value 信息,而是包装的很多 TreeNode 节点。实际的 ConcurrentHashMap 数组中,存放的是 TreeBin 对象,而不是 TreeNode 对象。
static final class TreeBin<K,V> extends Node<K,V> {TreeNode<K,V> root;volatile TreeNode<K,V> first;volatile Thread waiter;volatile int lockState;// values for lockStatestatic final int WRITER = 1; // set while holding write lockstatic final int WAITER = 2; // set when waiting for write lockstatic final int READER = 4; // increment value for setting read lock......}
ForwardingNode 在扩容时才会出现的特殊节点,其 key,value,hash 全部为 null。并拥有 nextTable 指针引用新的 table 数组。
static final class ForwardingNode<K,V> extends Node<K,V> {final Node<K,V>[] nextTable;ForwardingNode(Node<K,V>[] tab) {super(MOVED, null, null, null);this.nextTable = tab;}.....}
3.3 cas 关键操作
tabAt
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);}
该方法用来获取 table 数组中索引为 i 的 Node 元素。
casTabAt
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,Node<K,V> c, Node<K,V> v) {return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);}
利用CAS操作设置 table 数组中索引为i的元素
setTabAt
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);}
该方法用来设置 table 数组中索引为 i 的元素
3. 重点方法
3.1 实例构造器方法
ConcurrentHashMap 对象,一共提供了如下几个构造器方法:
// 1. 构造一个空的map,即table数组还未初始化,初始化放在第一次插入数据时,默认大小为16ConcurrentHashMap()// 2. 给定map的大小ConcurrentHashMap(int initialCapacity)// 3. 给定一个mapConcurrentHashMap(Map<? extends K, ? extends V> m)// 4. 给定map的大小以及加载因子ConcurrentHashMap(int initialCapacity, float loadFactor)// 5. 给定map大小,加载因子以及并发度(预计同时操作数据的线程)ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel)
第2种构造器,传入指定大小时的情况,该构造器源码为:
public ConcurrentHashMap(int initialCapacity) {// 1. 小于0直接抛异常if (initialCapacity < 0)throw new IllegalArgumentException();// 2. 判断是否超过了允许的最大值,超过了话则取最大值,否则再对该值进一步处理int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?MAXIMUM_CAPACITY :tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));// 3. 赋值给sizeCtlthis.sizeCtl = cap;}
当调用构造器方法之后,sizeCtl 的大小应该就代表了 ConcurrentHashMap 的大小,即 table 数组长度。
进入上边的tableSizeFor方法:
/*** Returns a power of two table size for the given desired capacity.* See Hackers Delight, sec 3.2*/private static final int tableSizeFor(int c) {int n = c - 1;n |= n >>> 1;n |= n >>> 2;n |= n >>> 4;n |= n >>> 8;n |= n >>> 16;return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}
该方法会将调用构造器方法时指定的大小转换成一个2的幂次方数,也就是说 ConcurrentHashMap 的大小一定是 2 的幂次方。调用构造器方法的时候并未构造出table数组(可以理解为ConcurrentHashMap的数据容器),只是算出 table 数组的长度,当第一次向 ConcurrentHashMap 插入数据的时候才真正的完成初始化创建 table 数组的工作(懒加载)。
3.2 initTable 方法
直接看源码:
/*** Initializes table, using the size recorded in sizeCtl.*/private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;while ((tab = table) == null || tab.length == 0) {if ((sc = sizeCtl) < 0)// 1. 保证只有一个线程正在进行初始化操作。// 因为 sizeCtl < 0 意味着已有线程进行初始化或者扩容Thread.yield(); // 让线程变成就绪状态等待 CPU 调度后执行else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {try {if ((tab = table) == null || tab.length == 0) {// 2. 得出数组的大小int n = (sc > 0) ? sc : DEFAULT_CAPACITY;// 3. 这里才真正的初始化数组Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];table = tab = nt;// 4. 计算数组中可用的大小:实际大小n*0.75(加载因子)sc = n - (n >>> 2);}} finally {sizeCtl = sc;}break;}}return tab;}
- 如果多个线程同时走到这个方法中,为了保证能够正确初始化,在第1步中会先通过 if 进行判断,若当前已经有一个线程正在初始化(即
sizeCtl值变为 -1),这个时候其他想要初始化的线程调用Thread.yield()让出 CPU 时间片然后自旋等待。 - 正在进行初始化的线程会调用
U.compareAndSwapInt方法将sizeCtl改为 -1 即正在初始化的状态。 - 另外还需要注意的事情是,在第四步中会进一步计算数组中可用的大小即为数组实际大小 n 乘以加载因子0.75。可以看看这里乘以0.75是怎么算的,0.75为四分之三,这里
n - (n >>> 2)是不是刚好是n-(1/4)n=(3/4)n。如果选择是无参的构造器的话,这里在 new Node 数组的时候会使用默认大小为DEFAULT_CAPACITY(16),然后乘以加载因子 0.75 为 12,也就是说数组的可用大小为 12。
3.3 put 方法
调用 put 方法时实际具体实现是 putVal 方法,源码如下:
public V put(K key, V value) {return putVal(key, value, false);}final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();//1. 计算key的hash值int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh;//2. 如果当前table还没有初始化先调用initTable方法将tab进行初始化if (tab == null || (n = tab.length) == 0)tab = initTable();//3. tab中索引为i的位置的元素为null,则直接使用CAS将值插入即可else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))break; // no lock when adding to empty bin}//4. 当前正在扩容else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else {V oldVal = null;//5.不上以上情况,即初始化完成、没有在扩容、tab中索引为i的位置元素不为null,加锁处理synchronized (f) {if (tabAt(tab, i) == f) {//5. 当前为链表,在链表中插入新的键值对if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key,value, null);break;}}}// 6.当前为红黑树,将新的键值对插入到红黑树中else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}}// 7.插入完键值对后再根据实际大小(大于等于8转为红黑树)看是否需要转换成红黑树if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD) // TREEIFY_THRESHOLD=8treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}//8.对当前容量大小进行检查,如果超过了临界值(实际大小*加载因子)就需要扩容addCount(1L, binCount);return null;}
逻辑见代码注释,整体而言为了解决线程安全的问题,ConcurrentHashMap 使用了synchronzied + CAS + 红黑树的方式。在 jdk 1.8 之前,ConcurrentHashmap 结构图:
- ConcurrentHashMap 是一个哈希桶数组,如果不出现哈希冲突的时候,每个元素均匀的分布在哈希桶数组中。
- 当出现哈希冲突的时候,用标准的链地址的解决方式,将 hash 值相同的节点构成链表的形式,称为「拉链法」,另外,在1.8 版本中为了防止拉链过长,当链表的长度大于8的时候会将链表转换成红黑树。
- table 数组中的每个元素实际上是单链表的头结点或者红黑树的根节点。
当插入键值对时首先应该定位到要插入的桶,即插入 table 数组的索引 i 处。如何计算得出索引 i 呢?当然是根据 key 的 hashCode 值。
- 1.
**spread()**重哈希,以减少 Hash 冲突
对于一个hash表来说,hash 值分散的不够均匀的话会大大增加哈希冲突的概率,从而影响到 hash 表的性能。因此通过 spread 方法进行了一次重hash从而大大减小哈希冲突的可能性。spread 方法为:
static final int spread(int h) {return (h ^ (h >>> 16)) & HASH_BITS;}
该方法主要是将 key 的 hashCode 的低16位于高16位进行异或运算,这样不仅能够使得 hash 值能够分散能够均匀减小 hash 冲突的概率,另外只用到了异或运算,在性能开销上也能兼顾,做到平衡的 trade-off。
- 2. 初始化 table
第 2 步,会判断当前 table 数组是否初始化了,没有的话就调用 initTable 进行初始化,该方法在上面已经讲过了。
- 3. 能否将新值直接插入 table 数组
如果插入值待插入的位置刚好所在的 table 数组为 null 的话就可以直接将值插入。
那么怎样根据 hash 确定在 table 中待插入的索引i呢?很显然可以通过 hash 值与数组的长度取模操作,从而确定新值插入到数组的哪个位置。而之前我们提过 ConcurrentHashMap 的大小总是2的幂次方,(n - 1) & hash运算等价于对长度 n 取模,也就是 hash%n,但是位运算比取模运算的效率要高很多,
确定好数组的索引i后,就可以用 tabAt() 方法获取该位置上的元素,如果当前 Node f 为 null 的话,就可以直接用 casTabAt 方法将新值插入即可。
- 4. 当前是否正在扩容
如果当前节点不为 null,且该节点为特殊节点(forwardingNode)的话,就说明当前 concurrentHashMap 正在进行扩容操作,关于扩容操作,下面会作为一个具体的方法进行讲解。
那么怎样确定当前的这个 Node 是不是特殊的节点了?是通过判断该节点的 hash 值是不是等于 -1(MOVED),代码为(fh = f.hash) == MOVED,对 MOVED 的解释在源码上也写的很清楚了:
static final int MOVED = -1; // hash for forwarding nodes
- 5. 当 table[i] 为链表的头结点,在链表中插入新值
在 table[i] 不为 null 且不为forwardingNode 时,并且当前 Node f的 hash 值大于0(fh >= 0)的话说明当前节点 f 为当前桶的所有的节点组成的链表的头结点。那么接下来,要想向 ConcurrentHashMap插入新值的话就是向这个链表插入新值。通过 synchronized (f) 的方式进行加锁以实现线程安全性。往链表中插入节点的部分代码为:
if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;// 找到hash值相同的key,覆盖旧值即可if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {//如果到链表末尾仍未找到,则直接将新值插入到链表末尾即可pred.next = new Node<K,V>(hash, key, value, null);break;}}}
- 在链表中如果找到了与待插入的键值对的 key 相同的节点,就直接覆盖即可;
- 如果直到找到了链表的末尾都没有找到的话,就直接将待插入的键值对追加到链表的末尾即可
- 6. 当 table[i] 为红黑树的根节点,在红黑树中插入新值
if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}
首先在 if 中通过 f instanceof TreeBin 判断当前 table[i] 是否是树节点,这下也正好验证了我们在最上面介绍时说的 TreeBin 会对 TreeNode 做进一步封装,对红黑树进行操作的时候针对的是 TreeBin 而不是 TreeNode。
调用 putTreeVal 方法完成向红黑树插入新节点,同样的逻辑,如果在红黑树中存在于待插入键值对的 Key 相同(hash值相等并且equals方法判断为true)的节点的话,就覆盖旧值,否则就向红黑树追加新节点。
- 7. 根据当前节点个数进行调整
当完成数据新节点插入之后,会进一步对当前链表大小进行调整,这部分代码为:
if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}
如果当前链表节点个数大于等于 8(TREEIFY_THRESHOLD)的时候,就会调用treeifyBin方法将tabel[i](第i个散列桶)拉链转换成红黑树。
3.3.1 put 方法总结
整体流程:
- 首先对于每一个放入的值,首先利用
spread方法对 key 的 hashcode 进行一次hash计算,由此来确定这个值在 table 中的位置; - 如果当前table数组还未初始化,先将 table 数组进行初始化操作;
- 如果这个位置是 null 的,那么使用 CAS 操作直接放入;
- 如果这个位置存在结点,说明发生了 hash 碰撞,首先判断这个节点的类型。如果该节点
fh==MOVED(代表forwardingNode,数组正在进行扩容)的话,说明正在进行扩容; - 如果是链表节点(fh>0),则得到的结点就是 hash 值相同的节点组成的链表的头节点。需要依次向后遍历确定这个新加入的值所在位置。如果遇到 key 相同的节点,则只需要覆盖该结点的 value 值即可。否则依次向后遍历,直到链表尾插入这个结点;
- 如果这个节点的类型是 TreeBin 的话,直接调用红黑树的插入方法进行插入新的节点;
- 插入完节点之后再次检查链表长度,如果长度大于 8,就把这个链表转换成红黑树;
- 对当前容量大小进行检查,如果超过了临界值(实际大小*加载因子)就需要扩容。
3.4 get 方法
public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;// 1. 重hashint h = spread(key.hashCode());if ((tab = table) != null && (n = tab.length) > 0 &&(e = tabAt(tab, (n - 1) & h)) != null) {// 2. table[i]桶节点的key与查找的key相同,则直接返回if ((eh = e.hash) == h) {if ((ek = e.key) == key || (ek != null && key.equals(ek)))return e.val;}// 3. 当前节点hash小于0说明为树节点,在红黑树中查找即可else if (eh < 0)return (p = e.find(h, key)) != null ? p.val : null;while ((e = e.next) != null) {//4. 从链表中查找,查找到则返回该节点的value,否则就返回null即可if (e.hash == h &&((ek = e.key) == key || (ek != null && key.equals(ek))))return e.val;}}return null;}
- 首先先看当前的 hash 桶数组节点即
table[i]是否为查找的节点,若是则直接返回; - 若不是,则继续再看当前是不是树节点?通过看节点的 hash 值是否为小于 0,如果小于 0 则为树节点。
- 如果是树节点在红黑树中查找节点;
- 如果不是树节点,那就只剩下为链表的形式的一种可能性了,就向后遍历查找节点,若查找到则返回节点的value即可,若没有找到就返回 null。
3.5 transfer 方法
当 ConcurrentHashMap 容量不足的时候,需要对 table 进行扩容。这个方法的基本思想跟 HashMap 是很像的,但是由于它是支持并发扩容的,所以要复杂的多。原因是它支持多线程进行扩容操作,而并没有加锁。我想这样做的目的不仅仅是为了满足 concurrent 的要求,而是希望利用并发处理去减少扩容带来的时间影响。transfer 方法源码为:
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {int n = tab.length, stride;if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)stride = MIN_TRANSFER_STRIDE; // subdivide range//1. 新建Node数组,容量为之前的两倍if (nextTab == null) { // initiatingtry {@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];nextTab = nt;} catch (Throwable ex) { // try to cope with OOMEsizeCtl = Integer.MAX_VALUE;return;}nextTable = nextTab;transferIndex = n;}int nextn = nextTab.length;//2. 新建forwardingNode引用,在之后会用到ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);boolean advance = true;boolean finishing = false; // to ensure sweep before committing nextTabfor (int i = 0, bound = 0;;) {Node<K,V> f; int fh;// 3. 确定遍历中的索引iwhile (advance) {int nextIndex, nextBound;if (--i >= bound || finishing)advance = false;else if ((nextIndex = transferIndex) <= 0) {i = -1;advance = false;}else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex,nextBound = (nextIndex > stride ?nextIndex - stride : 0))) {bound = nextBound;i = nextIndex - 1;advance = false;}}//4.将原数组中的元素复制到新数组中去//4.5 for循环退出,扩容结束修改sizeCtl属性if (i < 0 || i >= n || i + n >= nextn) {int sc;if (finishing) {nextTable = null;table = nextTab;sizeCtl = (n << 1) - (n >>> 1);return;}if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)return;finishing = advance = true;i = n; // recheck before commit}}//4.1 当前数组中第i个元素为null,用CAS设置成特殊节点forwardingNode(可以理解成占位符)else if ((f = tabAt(tab, i)) == null)advance = casTabAt(tab, i, null, fwd);//4.2 如果遍历到ForwardingNode节点 说明这个点已经被处理过了 直接跳过这里是控制并发扩容的核心else if ((fh = f.hash) == MOVED)advance = true; // already processedelse {synchronized (f) {if (tabAt(tab, i) == f) {Node<K,V> ln, hn;if (fh >= 0) {//4.3 处理当前节点为链表的头结点的情况,构造两个链表,一个是原链表 另一个是原链表的反序排列int runBit = fh & n;Node<K,V> lastRun = f;for (Node<K,V> p = f.next; p != null; p = p.next) {int b = p.hash & n;if (b != runBit) {runBit = b;lastRun = p;}}if (runBit == 0) {ln = lastRun;hn = null;}else {hn = lastRun;ln = null;}for (Node<K,V> p = f; p != lastRun; p = p.next) {int ph = p.hash; K pk = p.key; V pv = p.val;if ((ph & n) == 0)ln = new Node<K,V>(ph, pk, pv, ln);elsehn = new Node<K,V>(ph, pk, pv, hn);}//在nextTable的i位置上插入一个链表setTabAt(nextTab, i, ln);//在nextTable的i+n的位置上插入另一个链表setTabAt(nextTab, i + n, hn);//在table的i位置上插入forwardNode节点 表示已经处理过该节点setTabAt(tab, i, fwd);//设置advance为true 返回到上面的while循环中 就可以执行i--操作advance = true;}//4.4 处理当前节点是TreeBin时的情况,操作和上面的类似else if (f instanceof TreeBin) {TreeBin<K,V> t = (TreeBin<K,V>)f;TreeNode<K,V> lo = null, loTail = null;TreeNode<K,V> hi = null, hiTail = null;int lc = 0, hc = 0;for (Node<K,V> e = t.first; e != null; e = e.next) {int h = e.hash;TreeNode<K,V> p = new TreeNode<K,V>(h, e.key, e.val, null, null);if ((h & n) == 0) {if ((p.prev = loTail) == null)lo = p;elseloTail.next = p;loTail = p;++lc;}else {if ((p.prev = hiTail) == null)hi = p;elsehiTail.next = p;hiTail = p;++hc;}}ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :(hc != 0) ? new TreeBin<K,V>(lo) : t;hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :(lc != 0) ? new TreeBin<K,V>(hi) : t;setTabAt(nextTab, i, ln);setTabAt(nextTab, i + n, hn);setTabAt(tab, i, fwd);advance = true;}}}}}}
代码逻辑请看注释,整个扩容操作分为两个部分:
第一部分是构建一个 nextTable,它的容量是原来的 2 倍,这个操作是单线程完成的。新建 table 数组的代码为:Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1],在原容量大小的基础上左移一位。
第二部分就是将原来 table 中的元素复制到 nextTable 中,主要是遍历复制的过程。 根据运算得到当前遍历的数组的位置 i,然后利用 tabAt 方法获得i位置的元素再进行判断:
- 如果这个位置为空,就在原 table 中的
i位置放入forwardNode节点,这个也是触发并发扩容的关键点; - 如果这个位置是 Node 节点(fh>=0),如果它是一个链表的头节点,就构造一个反序链表,把他们分别放在 nextTable 的 i 和 i+n 的位置上
- 如果这个位置是TreeBin 节点(fh<0),也做一个反序处理,并且判断是否需要 untreefi,把处理的结果分别放在 nextTable 的 i 和 i+n 的位置上
- 遍历过所有的节点以后就完成了复制工作,这时让 nextTable 作为新的 table,并且更新 sizeCtl 为新容量的 0.75倍 ,完成扩容。设置为新容量的 0.75 倍代码为
sizeCtl = (n << 1) - (n >>> 1),仔细体会下是不是很巧妙,n<<1 相当于 n 右移一位表示 n 的两倍即 2n,n>>>1 左右一位相当于 n 除以 2 即 0.5n,然后两者相减为 2n-0.5n=1.5n,是不是刚好等于新容量的 0.75倍即 2n*0.75=1.5n。最后用一个示意图来进行总结:

3.6 与 size 相关的一些方法
对于 ConcurrentHashMap 来说,这个 table 里到底装了多少东西其实是个不确定的数量,因为不可能在调用 **size()** 方法的时候像 GC 的「stop the world」一样让其他线程都停下来让你去统计,因此只能说这个数量是个估计值。为了统计元素个数,ConcurrentHashMap 定义了一些变量和一个内部类
/*** A padded cell for distributing counts. Adapted from LongAdder* and Striped64. See their internal docs for explanation.*/@sun.misc.Contended static final class CounterCell {volatile long value;CounterCell(long x) { value = x; }}/******************************************//*** 实际上保存的是 hashmap 中的元素个数 利用CAS锁进行更新但它并不用返回当前 hashmap 的元素个数*/private transient volatile long baseCount;/*** Spinlock (locked via CAS) used when resizing and/or creating CounterCells.*/private transient volatile int cellsBusy;/*** Table of counter cells. When non-null, size is a power of 2.*/private transient volatile CounterCell[] counterCells;
- mappingCount 与 size 方法
public int size() {long n = sumCount();return ((n < 0L) ? 0 :(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :(int)n);}/*** Returns the number of mappings. This method should be used* instead of {@link #size} because a ConcurrentHashMap may* contain more mappings than can be represented as an int. The* value returned is an estimate; the actual count may differ if* there are concurrent insertions or removals.** @return the number of mappings* @since 1.8*/public long mappingCount() {long n = sumCount();return (n < 0L) ? 0L : n; // ignore transient negative values}final long sumCount() {CounterCell[] as = counterCells; CounterCell a;long sum = baseCount;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;//所有counter的值求和}}return sum;}
使用一个 volatile 类型的变量baseCount 记录元素的个数,当插入新数据或则删除数据时,会通过 addCount() 方法更新 baseCount
- addCount 方法
在put方法结尾处调用了addCount方法,把当前 ConcurrentHashMap 的元素个数 +1 这个方法一共做了两件事:更新 baseCount 的值;检测是否进行扩容。
private final void addCount(long x, int check) {CounterCell[] as; long b, s;//利用CAS方法更新baseCount的值if ((as = counterCells) != null ||!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {CounterCell a; long v; int m;boolean uncontended = true;if (as == null || (m = as.length - 1) < 0 ||(a = as[ThreadLocalRandom.getProbe() & m]) == null ||!(uncontended =U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {fullAddCount(x, uncontended);return;}if (check <= 1)return;s = sumCount();}//如果check值大于等于0 则需要检验是否需要进行扩容操作if (check >= 0) {Node<K,V>[] tab, nt; int n, sc;while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&(n = tab.length) < MAXIMUM_CAPACITY) {int rs = resizeStamp(n);//if (sc < 0) {if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||transferIndex <= 0)break;//如果已经有其他线程在执行扩容操作if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))transfer(tab, nt);}//当前线程是唯一的或是第一个发起扩容的线程 此时nextTable=nullelse if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))transfer(tab, null);s = sumCount();}}}
4. 总结
JDK 6、7 中的 ConcurrentHashmap 主要使用 Segment 来实现减小锁粒度,分割成若干个 Segment。其中Segment 在实现上继承了ReentrantLock,这样就自带了锁的功能。jdk1.7 中采用 Segment + HashEntry 的方式进行实现,结构如下:
在 put 的时候需要锁住 Segment,get 时候不加锁,使用 volatile 来保证可见性,当要统计全局时(比如 size),首先会尝试多次计算 modcount 来确定,这几次尝试中,是否有其他线程进行了修改操作,如果没有,则直接返回 size。如果有,则需要依次锁住所有的 Segment 来计算。
**1.8** 之前 put 定位节点时要先定位到具体的 segment,然后再在 segment 中定位到具体的桶。而在 1.8 的时候摒弃了 segment 臃肿的设计,取而代之的是采用 **Node** + **CAS** + **Synchronized**,直接针对的是 Node[] tale 数组中的每一个桶,进一步减小了锁粒度。并且防止拉链过长导致性能下降,当链表长度大于 8 的时候采用红黑树的设计。
主要设计上的变化有以下几点:
- 不采用 segment 而采用 node,锁住 node 来实现减小锁粒度。
- 设计了 MOVED 状态 当 resize 的中过程中 线程 2 还在 put 数据,线程 2 会帮助 resize。
- 使用 3 个 CAS 操作来确保 node 的一些操作的原子性,这种方式代替了锁。
- sizeCtl 的不同值来代表不同含义,起到了控制的作用。
- 采用 synchronized 而不是 ReentrantLock
更多关于 1.7 版本与 1.8 版本的 ConcurrentHashMap 的实现对比,可以参考这篇文章。
另外这篇文章也不错:《吊打面试官》系列-ConcurrentHashMap & Hashtable
