- 前言
- 初级篇:1-34
- 1. 左大括号
{一般不能单独放一行 - 2. 未使用的变量
- 3. 未使用的 import
- 4. 简短声明的变量只能在函数内部使用
- 5. 使用简短声明来重复声明变量
- 6. 不能使用简短声明来设置字段的值
- 7. 不小心覆盖了变量
- 8. 显式类型的变量无法使用 nil 来初始化
- 9. 直接使用值为 nil 的 slice、map
- 10. map 容量
- 11. string 类型的变量值不能为 nil
- 12. Array 类型的值作为函数参数
- 13. range 遍历 slice 和 array 时混淆了返回值
- 14. slice 和 array 其实是一维数据
- 15. 访问 map 中不存在的 key
- 16. string 类型的值是常量,不可更改
- 17. string 与 byte slice 之间的转换
- 18. string 与索引操作符
- 19. 字符串并不都是 UTF8 文本
- 20. 字符串的长度
- 21. 在多行 array、slice、map 语句中缺少
,号 - 22.
log.Fatal和log.Panic不只是 log - 23. 对内建数据结构的操作并不是同步的
- 24. range 迭代 string 得到的值
- 25. range 迭代 map
- 26. switch 中的 fallthrough 语句
- 27. 自增和自减运算
- 28. 按位取反
- 29. 运算符的优先级
- 30. 不导出的 struct 字段无法被 encode
- 31. 程序退出时还有 goroutine 在执行
- 32. 向无缓冲的 channel 发送数据,只要 receiver 准备好了就会立刻返回
- 33. 向已关闭的 channel 发送数据会造成 panic
- 34. 使用了值为
nil的 channel - 34. 若函数 receiver 传参是传值方式,则无法修改参数的原有值
- 1. 左大括号
- 中级篇:35-50
- 35. 关闭 HTTP 的响应体
- 36. 关闭 HTTP 连接
- 37. 将 JSON 中的数字解码为 interface 类型
- 38. struct、array、slice 和 map 的值比较
- 39. 从 panic 中恢复
- 40. 在 range 迭代 slice、array、map 时通过更新引用来更新元素
- 41. slice 中隐藏的数据
- 42. Slice 中数据的误用
- 43. 旧 slice
- 44. 类型声明与方法
- 45. 跳出 for-switch 和 for-select 代码块
- 46. for 语句中的迭代变量与闭包函数
- 47. defer 函数的参数值
- 48. defer 函数的执行时机
- 49. 失败的类型断言
- 50. 阻塞的 gorutinue 与资源泄露
- 高级篇:51-57
原文:50 Shades of Go: Traps, Gotchas, and Common Mistakes,翻译已获作者 kcqon 授权。
不久前发现在知乎这篇质量很高的文章,打算加上自己的理解翻译一遍。文章分为三部分:初级篇 1-34,中级篇 35-50,高级篇 51-57
前言
Go 是一门简单有趣的编程语言,与其他语言一样,在使用时不免会遇到很多坑,不过它们大多不是 Go 本身的设计缺陷。如果你刚从其他语言转到 Go,那这篇文章里的坑多半会踩到。
如果花时间学习官方 doc、wiki、讨论邮件列表、 Rob Pike 的大量文章以及 Go 的源码,会发现这篇文章中的坑是很常见的,新手跳过这些坑,能减少大量调试代码的时间。
初级篇:1-34
1. 左大括号 { 一般不能单独放一行
在其他大多数语言中,{ 的位置你自行决定。Go 比较特别,遵守分号注入规则(automatic semicolon injection):编译器会在每行代码尾部特定分隔符后加 ; 来分隔多条语句,比如会在 ) 后加分号:
// 错误示例func main(){println("hello world")}// 等效于func main(); // 无函数体{println("hello world")}
./main.go: missing function body
./main.go: syntax error: unexpected semicolon or newline before {
// 正确示例func main() {println("hello world")}
注意代码块等特殊情况:
// { 并不遵守分号注入规则,不会在其后边自动加分,此时可换行func main() {{println("hello world")}}
2. 未使用的变量
如果在函数体代码中有未使用的变量,则无法通过编译,不过全局变量声明但不使用是可以的。
即使变量声明后为变量赋值,依旧无法通过编译,需在某处使用它:
// 错误示例var gvar int // 全局变量,声明不使用也可以func main() {var one int // error: one declared and not usedtwo := 2 // error: two declared and not usedvar three int // error: three declared and not usedthree = 3}// 正确示例// 可以直接注释或移除未使用的变量func main() {var one int_ = onetwo := 2println(two)var three intone = threevar four intfour = four}
3. 未使用的 import
如果你 import 一个包,但包中的变量、函数、接口和结构体一个都没有用到的话,将编译失败。
可以使用 _ 下划线符号作为别名来忽略导入的包,从而避免编译错误,这只会执行 package 的 init()
// 错误示例import ("fmt" // imported and not used: "fmt""log" // imported and not used: "log""time" // imported and not used: "time")func main() {}// 正确示例// 可以使用 goimports 工具来注释或移除未使用到的包import (_ "fmt""log""time")func main() {_ = log.Println_ = time.Now}
4. 简短声明的变量只能在函数内部使用
// 错误示例myvar := 1 // syntax error: non-declaration statement outside function bodyfunc main() {}// 正确示例var myvar = 1func main() {}
5. 使用简短声明来重复声明变量
不能用简短声明方式来单独为一个变量重复声明, := 左侧至少有一个新变量,才允许多变量的重复声明:
// 错误示例func main() {one := 0one := 1 // error: no new variables on left side of :=}// 正确示例func main() {one := 0one, two := 1, 2 // two 是新变量,允许 one 的重复声明。比如 error 处理经常用同名变量 errone, two = two, one // 交换两个变量值的简写}
6. 不能使用简短声明来设置字段的值
struct 的变量字段不能使用 := 来赋值以使用预定义的变量来避免解决:
// 错误示例type info struct {result int}func work() (int, error) {return 3, nil}func main() {var data infodata.result, err := work() // error: non-name data.result on left side of :=fmt.Printf("info: %+v\n", data)}// 正确示例func main() {var data infovar err error // err 需要预声明data.result, err = work()if err != nil {fmt.Println(err)return}fmt.Printf("info: %+v\n", data)}
7. 不小心覆盖了变量
对从动态语言转过来的开发者来说,简短声明很好用,这可能会让人误会 := 是一个赋值操作符。
如果你在新的代码块中像下边这样误用了 :=,编译不会报错,但是变量不会按你的预期工作:
func main() {x := 1println(x) // 1{println(x) // 1x := 2println(x) // 2 // 新的 x 变量的作用域只在代码块内部}println(x) // 1}
这是 Go 开发者常犯的错,而且不易被发现。
可使用 vet 工具来诊断这种变量覆盖,Go 默认不做覆盖检查,添加 -shadow 选项来启用:
> go tool vet -shadow main.gomain.go:9: declaration of "x" shadows declaration at main.go:5
注意 vet 不会报告全部被覆盖的变量,可以使用 go-nyet 来做进一步的检测:
> $GOPATH/bin/go-nyet main.gomain.go:10:3:Shadowing variable `x`
8. 显式类型的变量无法使用 nil 来初始化
nil 是 interface、function、pointer、map、slice 和 channel 类型变量的默认初始值。但声明时不指定类型,编译器也无法推断出变量的具体类型。
// 错误示例func main() {var x = nil // error: use of untyped nil_ = x}// 正确示例func main() {var x interface{} = nil_ = x}
9. 直接使用值为 nil 的 slice、map
允许对值为 nil 的 slice 添加元素,但对值为 nil 的 map 添加元素则会造成运行时 panic
// map 错误示例func main() {var m map[string]intm["one"] = 1 // error: panic: assignment to entry in nil map// m := make(map[string]int)// map 的正确声明,分配了实际的内存}// slice 正确示例func main() {var s []ints = append(s, 1)}
10. map 容量
在创建 map 类型的变量时可以指定容量,但不能像 slice 一样使用 cap() 来检测分配空间的大小:
// 错误示例func main() {m := make(map[string]int, 99)println(cap(m)) // error: invalid argument m1 (type map[string]int) for cap}
11. string 类型的变量值不能为 nil
对那些喜欢用 nil 初始化字符串的人来说,这就是坑:
// 错误示例func main() {var s string = nil // cannot use nil as type string in assignmentif s == nil { // invalid operation: s == nil (mismatched types string and nil)s = "default"}}// 正确示例func main() {var s string // 字符串类型的零值是空串 ""if s == "" {s = "default"}}
12. Array 类型的值作为函数参数
在 C/C++ 中,数组(名)是指针。将数组作为参数传进函数时,相当于传递了数组内存地址的引用,在函数内部会改变该数组的值。
在 Go 中,数组是值。作为参数传进函数时,传递的是数组的原始值拷贝,此时在函数内部是无法更新该数组的:
// 数组使用值拷贝传参func main() {x := [3]int{1,2,3}func(arr [3]int) {arr[0] = 7fmt.Println(arr) // [7 2 3]}(x)fmt.Println(x) // [1 2 3] // 并不是你以为的 [7 2 3]}
如果想修改参数数组:
- 直接传递指向这个数组的指针类型:
// 传址会修改原数据func main() {x := [3]int{1,2,3}func(arr *[3]int) {(*arr)[0] = 7fmt.Println(arr) // &[7 2 3]}(&x)fmt.Println(x) // [7 2 3]}
- 直接使用 slice:即使函数内部得到的是 slice 的值拷贝,但依旧会更新 slice 的原始数据(底层 array)
// 会修改 slice 的底层 array,从而修改 slicefunc main() {x := []int{1, 2, 3}func(arr []int) {arr[0] = 7fmt.Println(x) // [7 2 3]}(x)fmt.Println(x) // [7 2 3]}
13. range 遍历 slice 和 array 时混淆了返回值
与其他编程语言中的 for-in 、foreach 遍历语句不同,Go 中的 range 在遍历时会生成 2 个值,第一个是元素索引,第二个是元素的值:
// 错误示例func main() {x := []string{"a", "b", "c"}for v := range x {fmt.Println(v) // 1 2 3}}// 正确示例func main() {x := []string{"a", "b", "c"}for _, v := range x { // 使用 _ 丢弃索引fmt.Println(v)}}
14. slice 和 array 其实是一维数据
看起来 Go 支持多维的 array 和 slice,可以创建数组的数组、切片的切片,但其实并不是。
对依赖动态计算多维数组值的应用来说,就性能和复杂度而言,用 Go 实现的效果并不理想。
可以使用原始的一维数组、“独立“ 的切片、“共享底层数组”的切片来创建动态的多维数组。
使用原始的一维数组:要做好索引检查、溢出检测、以及当数组满时再添加值时要重新做内存分配。
使用“独立”的切片分两步:
- 创建外部 slice
- 对每个内部 slice 进行内存分配
注意内部的 slice 相互独立,使得任一内部 slice 增缩都不会影响到其他的 slice
// 使用各自独立的 6 个 slice 来创建 [2][3] 的动态多维数组func main() {x := 2y := 4table := make([][]int, x)for i := range table {table[i] = make([]int, y)}}
- 使用“共享底层数组”的切片
创建一个存放原始数据的容器 slice
创建其他的 slice
切割原始 slice 来初始化其他的 slice
func main() {h, w := 2, 4raw := make([]int, h*w)for i := range raw {raw[i] = i}// 初始化原始 slicefmt.Println(raw, &raw[4]) // [0 1 2 3 4 5 6 7] 0xc420012120table := make([][]int, h)for i := range table {// 等间距切割原始 slice,创建动态多维数组 table// 0: raw[0*4: 0*4 + 4]// 1: raw[1*4: 1*4 + 4]table[i] = raw[i*w : i*w + w]}fmt.Println(table, &table[1][0]) // [[0 1 2 3] [4 5 6 7]] 0xc420012120}
更多关于多维数组的参考
go-how-is-two-dimensional-arrays-memory-representation
what-is-a-concise-way-to-create-a-2d-slice-in-go
15. 访问 map 中不存在的 key
和其他编程语言类似,如果访问了 map 中不存在的 key 则希望能返回 nil,比如在 PHP 中:
> php -r '$v = ["x"=>1, "y"=>2]; @var_dump($v["z"]);'NULL
Go 则会返回元素对应数据类型的零值,比如 nil、'' 、false 和 0,取值操作总有值返回,故不能通过取出来的值来判断 key 是不是在 map 中。
检查 key 是否存在可以用 map 直接访问,检查返回的第二个参数即可:
// 错误的 key 检测方式func main() {x := map[string]string{"one": "2", "two": "", "three": "3"}if v := x["two"]; v == "" {fmt.Println("key two is no entry") // 键 two 存不存在都会返回的空字符串}}// 正确示例func main() {x := map[string]string{"one": "2", "two": "", "three": "3"}if _, ok := x["two"]; !ok {fmt.Println("key two is no entry")}}
16. string 类型的值是常量,不可更改
尝试使用索引遍历字符串,来更新字符串中的个别字符,是不允许的。
string 类型的值是只读的二进制 byte slice,如果真要修改字符串中的字符,将 string 转为 []byte 修改后,再转为 string 即可:
// 修改字符串的错误示例func main() {x := "text"x[0] = "T" // error: cannot assign to x[0]fmt.Println(x)}// 修改示例func main() {x := "text"xBytes := []byte(x)xBytes[0] = 'T' // 注意此时的 T 是 rune 类型x = string(xBytes)fmt.Println(x) // Text}
注意: 上边的示例并不是更新字符串的正确姿势,因为一个 UTF8 编码的字符可能会占多个字节,比如汉字就需要 3~4 个字节来存储,此时更新其中的一个字节是错误的。
更新字串的正确姿势:将 string 转为 rune slice(此时 1 个 rune 可能占多个 byte),直接更新 rune 中的字符
func main() {x := "text"xRunes := []rune(x)xRunes[0] = '我'x = string(xRunes)fmt.Println(x) // 我ext}
17. string 与 byte slice 之间的转换
当进行 string 和 byte slice 相互转换时,参与转换的是拷贝的原始值。这种转换的过程,与其他编程语的强制类型转换操作不同,也和新 slice 与旧 slice 共享底层数组不同。
Go 在 string 与 byte slice 相互转换上优化了两点,避免了额外的内存分配:
在
map[string]中查找 key 时,使用了对应的[]byte,避免做m[string(key)]的内存分配使用
for range迭代 string 转换为 []byte 的迭代:for i,v := range []byte(str) {...}
雾:参考原文
18. string 与索引操作符
对字符串用索引访问返回的不是字符,而是一个 byte 值。
这种处理方式和其他语言一样,比如 PHP 中:
> php -r '$name="中文"; var_dump($name);' # "中文" 占用 6 个字节string(6) "中文"> php -r '$name="中文"; var_dump($name[0]);' # 把第一个字节当做 Unicode 字符读取,显示 U+FFFDstring(1) "�"> php -r '$name="中文"; var_dump($name[0].$name[1].$name[2]);'string(3) "中"
func main() {x := "ascii"fmt.Println(x[0]) // 97fmt.Printf("%T\n", x[0])// uint8}
如果需要使用 for range 迭代访问字符串中的字符(unicode code point / rune),标准库中有 "unicode/utf8" 包来做 UTF8 的相关解码编码。另外 utf8string 也有像 func (s *String) At(i int) rune 等很方便的库函数。
19. 字符串并不都是 UTF8 文本
string 的值不必是 UTF8 文本,可以包含任意的值。只有字符串是文字字面值时才是 UTF8 文本,字串可以通过转义来包含其他数据。
判断字符串是否是 UTF8 文本,可使用 “unicode/utf8” 包中的 ValidString() 函数:
func main() {str1 := "ABC"fmt.Println(utf8.ValidString(str1)) // truestr2 := "A\xfeC"fmt.Println(utf8.ValidString(str2)) // falsestr3 := "A\\xfeC"fmt.Println(utf8.ValidString(str3)) // true // 把转义字符转义成字面值}
20. 字符串的长度
在 Python 中:
data = u'♥'print(len(data)) # 1
然而在 Go 中:
func main() {char := "♥"fmt.Println(len(char)) // 3}
Go 的内建函数 len() 返回的是字符串的 byte 数量,而不是像 Python 中那样是计算 Unicode 字符数。
如果要得到字符串的字符数,可使用 “unicode/utf8” 包中的 RuneCountInString(str string) (n int)
func main() {char := "♥"fmt.Println(utf8.RuneCountInString(char)) // 1}
注意: RuneCountInString 并不总是返回我们看到的字符数,因为有的字符会占用 2 个 rune:
func main() {char := "é"fmt.Println(len(char)) // 3fmt.Println(utf8.RuneCountInString(char)) // 2fmt.Println("cafe\u0301") // café // 法文的 cafe,实际上是两个 rune 的组合}
21. 在多行 array、slice、map 语句中缺少 , 号
func main() {x := []int {1,2 // syntax error: unexpected newline, expecting comma or }}y := []int{1,2,}z := []int{1,2}// ...}
声明语句中 } 折叠到单行后,尾部的 , 不是必需的。
22. log.Fatal 和 log.Panic 不只是 log
log 标准库提供了不同的日志记录等级,与其他语言的日志库不同,Go 的 log 包在调用 Fatal*()、Panic*() 时能做更多日志外的事,如中断程序的执行等:
func main() {log.Fatal("Fatal level log: log entry") // 输出信息后,程序终止执行log.Println("Nomal level log: log entry")}
23. 对内建数据结构的操作并不是同步的
尽管 Go 本身有大量的特性来支持并发,但并不保证并发的数据安全,用户需自己保证变量等数据以原子操作更新。
goroutine 和 channel 是进行原子操作的好方法,或使用 “sync” 包中的锁。
24. range 迭代 string 得到的值
range 得到的索引是字符值(Unicode point / rune)第一个字节的位置,与其他编程语言不同,这个索引并不直接是字符在字符串中的位置。
注意一个字符可能占多个 rune,比如法文单词 café 中的 é。操作特殊字符可使用norm 包。
for range 迭代会尝试将 string 翻译为 UTF8 文本,对任何无效的码点都直接使用 0XFFFD rune(�)UNicode 替代字符来表示。如果 string 中有任何非 UTF8 的数据,应将 string 保存为 byte slice 再进行操作。
func main() {data := "A\xfe\x02\xff\x04"for _, v := range data {fmt.Printf("%#x ", v) // 0x41 0xfffd 0x2 0xfffd 0x4 // 错误}for _, v := range []byte(data) {fmt.Printf("%#x ", v) // 0x41 0xfe 0x2 0xff 0x4 // 正确}}
25. range 迭代 map
如果你希望以特定的顺序(如按 key 排序)来迭代 map,要注意每次迭代都可能产生不一样的结果。
Go 的运行时是有意打乱迭代顺序的,所以你得到的迭代结果可能不一致。但也并不总会打乱,得到连续相同的 5 个迭代结果也是可能的,如:
func main() {m := map[string]int{"one": 1, "two": 2, "three": 3, "four": 4}for k, v := range m {fmt.Println(k, v)}}
如果你去 Go Playground 重复运行上边的代码,输出是不会变的,只有你更新代码它才会重新编译。重新编译后迭代顺序是被打乱的:
![[转]Golang 新手可能会踩的 50 个坑 - 图1](http://p2j5s8fmr.bkt.clouddn.com/map-range.png#width=)
26. switch 中的 fallthrough 语句
switch 语句中的 case 代码块会默认带上 break,但可以使用 fallthrough 来强制执行下一个 case 代码块。
func main() {isSpace := func(char byte) bool {switch char {case ' ': // 空格符会直接 break,返回 false // 和其他语言不一样// fallthrough // 返回 truecase '\t':return true}return false}fmt.Println(isSpace('\t')) // truefmt.Println(isSpace(' ')) // false}
不过你可以在 case 代码块末尾使用 fallthrough,强制执行下一个 case 代码块。
也可以改写 case 为多条件判断:
func main() {isSpace := func(char byte) bool {switch char {case ' ', '\t':return true}return false}fmt.Println(isSpace('\t')) // truefmt.Println(isSpace(' ')) // true}
27. 自增和自减运算
很多编程语言都自带前置后置的 ++、-- 运算。但 Go 特立独行,去掉了前置操作,同时 ++、— 只作为运算符而非表达式。
// 错误示例func main() {data := []int{1, 2, 3}i := 0++i // syntax error: unexpected ++, expecting }fmt.Println(data[i++]) // syntax error: unexpected ++, expecting :}// 正确示例func main() {data := []int{1, 2, 3}i := 0i++fmt.Println(data[i]) // 2}
28. 按位取反
很多编程语言使用 ~ 作为一元按位取反(NOT)操作符,Go 重用 ^ XOR 操作符来按位取反:
// 错误的取反操作func main() {fmt.Println(~2) // bitwise complement operator is ^}// 正确示例func main() {var d uint8 = 2fmt.Printf("%08b\n", d) // 00000010fmt.Printf("%08b\n", ^d) // 11111101}
同时 ^ 也是按位异或(XOR)操作符。
一个操作符能重用两次,是因为一元的 NOT 操作 NOT 0x02,与二元的 XOR 操作 0x22 XOR 0xff 是一致的。
Go 也有特殊的操作符 AND NOT &^ 操作符,不同位才取1。
func main() {var a uint8 = 0x82var b uint8 = 0x02fmt.Printf("%08b [A]\n", a)fmt.Printf("%08b [B]\n", b)fmt.Printf("%08b (NOT B)\n", ^b)fmt.Printf("%08b ^ %08b = %08b [B XOR 0xff]\n", b, 0xff, b^0xff)fmt.Printf("%08b ^ %08b = %08b [A XOR B]\n", a, b, a^b)fmt.Printf("%08b & %08b = %08b [A AND B]\n", a, b, a&b)fmt.Printf("%08b &^%08b = %08b [A 'AND NOT' B]\n", a, b, a&^b)fmt.Printf("%08b&(^%08b)= %08b [A AND (NOT B)]\n", a, b, a&(^b))}
10000010 [A]00000010 [B]11111101 (NOT B)00000010 ^ 11111111 = 11111101 [B XOR 0xff]10000010 ^ 00000010 = 10000000 [A XOR B]10000010 & 00000010 = 00000010 [A AND B]10000010 &^00000010 = 10000000 [A 'AND NOT' B]10000010&(^00000010)= 10000000 [A AND (NOT B)]
29. 运算符的优先级
除了位清除(bit clear)操作符,Go 也有很多和其他语言一样的位操作符,但优先级另当别论。
func main() {fmt.Printf("0x2 & 0x2 + 0x4 -> %#x\n", 0x2&0x2+0x4) // & 优先 +//prints: 0x2 & 0x2 + 0x4 -> 0x6//Go: (0x2 & 0x2) + 0x4//C++: 0x2 & (0x2 + 0x4) -> 0x2fmt.Printf("0x2 + 0x2 << 0x1 -> %#x\n", 0x2+0x2<<0x1) // << 优先 +//prints: 0x2 + 0x2 << 0x1 -> 0x6//Go: 0x2 + (0x2 << 0x1)//C++: (0x2 + 0x2) << 0x1 -> 0x8fmt.Printf("0xf | 0x2 ^ 0x2 -> %#x\n", 0xf|0x2^0x2) // | 优先 ^//prints: 0xf | 0x2 ^ 0x2 -> 0xd//Go: (0xf | 0x2) ^ 0x2//C++: 0xf | (0x2 ^ 0x2) -> 0xf}
优先级列表:
Precedence Operator5 * / % << >> & &^4 + - | ^3 == != < <= > >=2 &&1 ||
30. 不导出的 struct 字段无法被 encode
以小写字母开头的字段成员是无法被外部直接访问的,所以 struct 在进行 json、xml、gob 等格式的 encode 操作时,这些私有字段会被忽略,导出时得到零值:
func main() {in := MyData{1, "two"}fmt.Printf("%#v\n", in) // main.MyData{One:1, two:"two"}encoded, _ := json.Marshal(in)fmt.Println(string(encoded)) // {"One":1} // 私有字段 two 被忽略了var out MyDatajson.Unmarshal(encoded, &out)fmt.Printf("%#v\n", out) // main.MyData{One:1, two:""}}
31. 程序退出时还有 goroutine 在执行
程序默认不等所有 goroutine 都执行完才退出,这点需要特别注意:
// 主程序会直接退出func main() {workerCount := 2for i := 0; i < workerCount; i++ {go doIt(i)}time.Sleep(1 * time.Second)fmt.Println("all done!")}func doIt(workerID int) {fmt.Printf("[%v] is running\n", workerID)time.Sleep(3 * time.Second) // 模拟 goroutine 正在执行fmt.Printf("[%v] is done\n", workerID)}
如下,main() 主程序不等两个 goroutine 执行完就直接退出了:
![[转]Golang 新手可能会踩的 50 个坑 - 图2](http://p2j5s8fmr.bkt.clouddn.com/goroutine-exits.png#width=)
常用解决办法:使用 “WaitGroup” 变量,它会让主程序等待所有 goroutine 执行完毕再退出。
如果你的 goroutine 要做消息的循环处理等耗时操作,可以向它们发送一条 kill 消息来关闭它们。或直接关闭一个它们都等待接收数据的 channel:
// 等待所有 goroutine 执行完毕// 进入死锁func main() {var wg sync.WaitGroupdone := make(chan struct{})workerCount := 2for i := 0; i < workerCount; i++ {wg.Add(1)go doIt(i, done, wg)}close(done)wg.Wait()fmt.Println("all done!")}func doIt(workerID int, done <-chan struct{}, wg sync.WaitGroup) {fmt.Printf("[%v] is running\n", workerID)defer wg.Done()<-donefmt.Printf("[%v] is done\n", workerID)}
执行结果:
![[转]Golang 新手可能会踩的 50 个坑 - 图3](http://p2j5s8fmr.bkt.clouddn.com/dead-goroutine.png#width=)
看起来好像 goroutine 都执行完了,然而报错:
fatal error: all goroutines are asleep - deadlock!
为什么会发生死锁?goroutine 在退出前调用了 wg.Done() ,程序应该正常退出的。
原因是 goroutine 得到的 “WaitGroup” 变量是 var wg WaitGroup 的一份拷贝值,即 doIt() 传参只传值。所以哪怕在每个 goroutine 中都调用了 wg.Done(), 主程序中的 wg 变量并不会受到影响。
// 等待所有 goroutine 执行完毕// 使用传址方式为 WaitGroup 变量传参// 使用 channel 关闭 goroutinefunc main() {var wg sync.WaitGroupdone := make(chan struct{})ch := make(chan interface{})workerCount := 2for i := 0; i < workerCount; i++ {wg.Add(1)go doIt(i, ch, done, &wg) // wg 传指针,doIt() 内部会改变 wg 的值}for i := 0; i < workerCount; i++ { // 向 ch 中发送数据,关闭 goroutinech <- i}close(done)wg.Wait()close(ch)fmt.Println("all done!")}func doIt(workerID int, ch <-chan interface{}, done <-chan struct{}, wg *sync.WaitGroup) {fmt.Printf("[%v] is running\n", workerID)defer wg.Done()for {select {case m := <-ch:fmt.Printf("[%v] m => %v\n", workerID, m)case <-done:fmt.Printf("[%v] is done\n", workerID)return}}}
运行效果:
![[转]Golang 新手可能会踩的 50 个坑 - 图4](http://p2j5s8fmr.bkt.clouddn.com/right-goroutine.png#width=)
32. 向无缓冲的 channel 发送数据,只要 receiver 准备好了就会立刻返回
只有在数据被 receiver 处理时,sender 才会阻塞。因运行环境而异,在 sender 发送完数据后,receiver 的 goroutine 可能没有足够的时间处理下一个数据。如:
func main() {ch := make(chan string)go func() {for m := range ch {fmt.Println("Processed:", m)time.Sleep(1 * time.Second) // 模拟需要长时间运行的操作}}()ch <- "cmd.1"ch <- "cmd.2" // 不会被接收处理}
运行效果:
![[转]Golang 新手可能会踩的 50 个坑 - 图5](http://p2j5s8fmr.bkt.clouddn.com/unbuffed-chan.png#width=)
33. 向已关闭的 channel 发送数据会造成 panic
从已关闭的 channel 接收数据是安全的:
接收状态值 ok 是 false 时表明 channel 中已没有数据可以接收了。类似的,从有缓冲的 channel 中接收数据,缓存的数据获取完再没有数据可取时,状态值也是 false
向已关闭的 channel 中发送数据会造成 panic:
func main() {ch := make(chan int)for i := 0; i < 3; i++ {go func(idx int) {ch <- idx}(i)}fmt.Println(<-ch) // 输出第一个发送的值close(ch) // 不能关闭,还有其他的 sendertime.Sleep(2 * time.Second) // 模拟做其他的操作}
运行结果:
![[转]Golang 新手可能会踩的 50 个坑 - 图6](http://p2j5s8fmr.bkt.clouddn.com/channnel.png#width=)
针对上边有 bug 的这个例子,可使用一个废弃 channel done 来告诉剩余的 goroutine 无需再向 ch 发送数据。此时 <- done 的结果是 {}:
func main() {ch := make(chan int)done := make(chan struct{})for i := 0; i < 3; i++ {go func(idx int) {select {case ch <- (idx + 1) * 2:fmt.Println(idx, "Send result")case <-done:fmt.Println(idx, "Exiting")}}(i)}fmt.Println("Result: ", <-ch)close(done)time.Sleep(3 * time.Second)}
运行效果:
![[转]Golang 新手可能会踩的 50 个坑 - 图7](http://p2j5s8fmr.bkt.clouddn.com/normal-channel.png#width=)
34. 使用了值为 nil 的 channel
在一个值为 nil 的 channel 上发送和接收数据将永久阻塞:
func main() {var ch chan int // 未初始化,值为 nilfor i := 0; i < 3; i++ {go func(i int) {ch <- i}(i)}fmt.Println("Result: ", <-ch)time.Sleep(2 * time.Second)}
runtime 死锁错误:
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [chan receive (nil chan)]
利用这个死锁的特性,可以用在 select 中动态的打开和关闭 case 语句块:
func main() {inCh := make(chan int)outCh := make(chan int)go func() {var in <-chan int = inChvar out chan<- intvar val intfor {select {case out <- val:println("--------")out = nilin = inChcase val = <-in:println("++++++++++")out = outChin = nil}}}()go func() {for r := range outCh {fmt.Println("Result: ", r)}}()time.Sleep(0)inCh <- 1inCh <- 2time.Sleep(3 * time.Second)}
运行效果:![[转]Golang 新手可能会踩的 50 个坑 - 图8](http://p2j5s8fmr.bkt.clouddn.com/runns.png#width=)
34. 若函数 receiver 传参是传值方式,则无法修改参数的原有值
方法 receiver 的参数与一般函数的参数类似:如果声明为值,那方法体得到的是一份参数的值拷贝,此时对参数的任何修改都不会对原有值产生影响。
除非 receiver 参数是 map 或 slice 类型的变量,并且是以指针方式更新 map 中的字段、slice 中的元素的,才会更新原有值:
type data struct {num intkey *stringitems map[string]bool}func (this *data) pointerFunc() {this.num = 7}func (this data) valueFunc() {this.num = 8*this.key = "valueFunc.key"this.items["valueFunc"] = true}func main() {key := "key1"d := data{1, &key, make(map[string]bool)}fmt.Printf("num=%v key=%v items=%v\n", d.num, *d.key, d.items)d.pointerFunc() // 修改 num 的值为 7fmt.Printf("num=%v key=%v items=%v\n", d.num, *d.key, d.items)d.valueFunc() // 修改 key 和 items 的值fmt.Printf("num=%v key=%v items=%v\n", d.num, *d.key, d.items)}
运行结果:
![[转]Golang 新手可能会踩的 50 个坑 - 图9](http://p2j5s8fmr.bkt.clouddn.com/change-origal.png#width=)
中级篇:35-50
35. 关闭 HTTP 的响应体
使用 HTTP 标准库发起请求、获取响应时,即使你不从响应中读取任何数据或响应为空,都需要手动关闭响应体。新手很容易忘记手动关闭,或者写在了错误的位置:
// 请求失败造成 panicfunc main() {resp, err := http.Get("https://api.ipify.org?format=json")defer resp.Body.Close() // resp 可能为 nil,不能读取 Bodyif err != nil {fmt.Println(err)return}body, err := ioutil.ReadAll(resp.Body)checkError(err)fmt.Println(string(body))}func checkError(err error) {if err != nil{log.Fatalln(err)}}
上边的代码能正确发起请求,但是一旦请求失败,变量 resp 值为 nil,造成 panic:
panic: runtime error: invalid memory address or nil pointer dereference
应该先检查 HTTP 响应错误为 nil,再调用 resp.Body.Close() 来关闭响应体:
// 大多数情况正确的示例func main() {resp, err := http.Get("https://api.ipify.org?format=json")checkError(err)defer resp.Body.Close() // 绝大多数情况下的正确关闭方式body, err := ioutil.ReadAll(resp.Body)checkError(err)fmt.Println(string(body))}
输出:
Get https://api.ipify.org?format=json: x509: certificate signed by unknown authority
绝大多数请求失败的情况下,resp 的值为 nil 且 err 为 non-nil。但如果你得到的是重定向错误,那它俩的值都是 non-nil,最后依旧可能发生内存泄露。2 个解决办法:
可以直接在处理 HTTP 响应错误的代码块中,直接关闭非 nil 的响应体。
手动调用
defer来关闭响应体:
// 正确示例func main() {resp, err := http.Get("http://www.baidu.com")// 关闭 resp.Body 的正确姿势if resp != nil {defer resp.Body.Close()}checkError(err)defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)checkError(err)fmt.Println(string(body))}
resp.Body.Close() 早先版本的实现是读取响应体的数据之后丢弃,保证了 keep-alive 的 HTTP 连接能重用处理不止一个请求。但 Go 的最新版本将读取并丢弃数据的任务交给了用户,如果你不处理,HTTP 连接可能会直接关闭而非重用,参考在 Go 1.5 版本文档。
如果程序大量重用 HTTP 长连接,你可能要在处理响应的逻辑代码中加入:
_, err = io.Copy(ioutil.Discard, resp.Body) // 手动丢弃读取完毕的数据
如果你需要完整读取响应,上边的代码是需要写的。比如在解码 API 的 JSON 响应数据:
json.NewDecoder(resp.Body).Decode(&data)
36. 关闭 HTTP 连接
一些支持 HTTP1.1 或 HTTP1.0 配置了 connection: keep-alive 选项的服务器会保持一段时间的长连接。但标准库 “net/http” 的连接默认只在服务器主动要求关闭时才断开,所以你的程序可能会消耗完 socket 描述符。解决办法有 2 个,请求结束后:
直接设置请求变量的
Close字段值为true,每次请求结束后就会主动关闭连接。设置 Header 请求头部选项
Connection: close,然后服务器返回的响应头部也会有这个选项,此时 HTTP 标准库会主动断开连接。
// 主动关闭连接func main() {req, err := http.NewRequest("GET", "http://golang.org", nil)checkError(err)req.Close = true//req.Header.Add("Connection", "close") // 等效的关闭方式resp, err := http.DefaultClient.Do(req)if resp != nil {defer resp.Body.Close()}checkError(err)body, err := ioutil.ReadAll(resp.Body)checkError(err)fmt.Println(string(body))}
你可以创建一个自定义配置的 HTTP transport 客户端,用来取消 HTTP 全局的复用连接:
func main() {tr := http.Transport{DisableKeepAlives: true}client := http.Client{Transport: &tr}resp, err := client.Get("https://golang.google.cn/")if resp != nil {defer resp.Body.Close()}checkError(err)fmt.Println(resp.StatusCode) // 200body, err := ioutil.ReadAll(resp.Body)checkError(err)fmt.Println(len(string(body)))}
根据需求选择使用场景:
若你的程序要向同一服务器发大量请求,使用默认的保持长连接。
若你的程序要连接大量的服务器,且每台服务器只请求一两次,那收到请求后直接关闭连接。或增加最大文件打开数
fs.file-max的值。
37. 将 JSON 中的数字解码为 interface 类型
在 encode/decode JSON 数据时,Go 默认会将数值当做 float64 处理,比如下边的代码会造成 panic:
func main() {var data = []byte(`{"status": 200}`)var result map[string]interface{}if err := json.Unmarshal(data, &result); err != nil {log.Fatalln(err)}fmt.Printf("%T\n", result["status"]) // float64var status = result["status"].(int) // 类型断言错误fmt.Println("Status value: ", status)}
panic: interface conversion: interface {} is float64, not int
如果你尝试 decode 的 JSON 字段是整型,你可以:
将 int 值转为 float 统一使用
将 decode 后需要的 float 值转为 int 使用
// 将 decode 的值转为 int 使用func main() {var data = []byte(`{"status": 200}`)var result map[string]interface{}if err := json.Unmarshal(data, &result); err != nil {log.Fatalln(err)}var status = uint64(result["status"].(float64))fmt.Println("Status value: ", status)}
- 使用
Decoder类型来 decode JSON 数据,明确表示字段的值类型
// 指定字段类型func main() {var data = []byte(`{"status": 200}`)var result map[string]interface{}var decoder = json.NewDecoder(bytes.NewReader(data))decoder.UseNumber()if err := decoder.Decode(&result); err != nil {log.Fatalln(err)}var status, _ = result["status"].(json.Number).Int64()fmt.Println("Status value: ", status)}// 你可以使用 string 来存储数值数据,在 decode 时再决定按 int 还是 float 使用// 将数据转为 decode 为 stringfunc main() {var data = []byte({"status": 200})var result map[string]interface{}var decoder = json.NewDecoder(bytes.NewReader(data))decoder.UseNumber()if err := decoder.Decode(&result); err != nil {log.Fatalln(err)}var status uint64err := json.Unmarshal([]byte(result["status"].(json.Number).String()), &status);checkError(err)fmt.Println("Status value: ", status)}
- 使用
struct类型将你需要的数据映射为数值型
// struct 中指定字段类型func main() {var data = []byte(`{"status": 200}`)var result struct {Status uint64 `json:"status"`}err := json.NewDecoder(bytes.NewReader(data)).Decode(&result)checkError(err)fmt.Printf("Result: %+v", result)}
- 可以使用
struct将数值类型映射为json.RawMessage原生数据类型
适用于如果 JSON 数据不着急 decode 或 JSON 某个字段的值类型不固定等情况:
// 状态名称可能是 int 也可能是 string,指定为 json.RawMessage 类型func main() {records := [][]byte{[]byte(`{"status":200, "tag":"one"}`),[]byte(`{"status":"ok", "tag":"two"}`),}for idx, record := range records {var result struct {StatusCode uint64StatusName stringStatus json.RawMessage `json:"status"`Tag string `json:"tag"`}err := json.NewDecoder(bytes.NewReader(record)).Decode(&result)checkError(err)var name stringerr = json.Unmarshal(result.Status, &name)if err == nil {result.StatusName = name}var code uint64err = json.Unmarshal(result.Status, &code)if err == nil {result.StatusCode = code}fmt.Printf("[%v] result => %+v\n", idx, result)}}
38. struct、array、slice 和 map 的值比较
可以使用相等运算符 == 来比较结构体变量,前提是两个结构体的成员都是可比较的类型:
type data struct {num intfp float32complex complex64str stringchar runeyes boolevents <-chan stringhandler interface{}ref *byteraw [10]byte}func main() {v1 := data{}v2 := data{}fmt.Println("v1 == v2: ", v1 == v2) // true}
如果两个结构体中有任意成员是不可比较的,将会造成编译错误。注意数组成员只有在数组元素可比较时候才可比较。
type data struct {num intchecks [10]func() bool // 无法比较doIt func() bool // 无法比较m map[string]string // 无法比较bytes []byte // 无法比较}func main() {v1 := data{}v2 := data{}fmt.Println("v1 == v2: ", v1 == v2)}
invalid operation: v1 == v2 (struct containing [10]func() bool cannot be compared)
Go 提供了一些库函数来比较那些无法使用 == 比较的变量,比如使用 “reflect” 包的 DeepEqual() :
// 比较相等运算符无法比较的元素func main() {v1 := data{}v2 := data{}fmt.Println("v1 == v2: ", reflect.DeepEqual(v1, v2)) // truem1 := map[string]string{"one": "a", "two": "b"}m2 := map[string]string{"two": "b", "one": "a"}fmt.Println("v1 == v2: ", reflect.DeepEqual(m1, m2)) // trues1 := []int{1, 2, 3}s2 := []int{1, 2, 3}// 注意两个 slice 相等,值和顺序必须一致fmt.Println("v1 == v2: ", reflect.DeepEqual(s1, s2)) // true}
这种比较方式可能比较慢,根据你的程序需求来使用。DeepEqual() 还有其他用法:
func main() {var b1 []byte = nilb2 := []byte{}fmt.Println("b1 == b2: ", reflect.DeepEqual(b1, b2)) // false}
注意:
DeepEqual()并不总适合于比较 slice
func main() {var str = "one"var in interface{} = "one"fmt.Println("str == in: ", reflect.DeepEqual(str, in)) // truev1 := []string{"one", "two"}v2 := []string{"two", "one"}fmt.Println("v1 == v2: ", reflect.DeepEqual(v1, v2)) // falsedata := map[string]interface{}{"code": 200,"value": []string{"one", "two"},}encoded, _ := json.Marshal(data)var decoded map[string]interface{}json.Unmarshal(encoded, &decoded)fmt.Println("data == decoded: ", reflect.DeepEqual(data, decoded)) // false}
如果要大小写不敏感来比较 byte 或 string 中的英文文本,可以使用 “bytes” 或 “strings” 包的 ToUpper() 和 ToLower() 函数。比较其他语言的 byte 或 string,应使用 bytes.EqualFold() 和 strings.EqualFold()
如果 byte slice 中含有验证用户身份的数据(密文哈希、token 等),不应再使用 reflect.DeepEqual()、bytes.Equal()、 bytes.Compare()。这三个函数容易对程序造成 timing attacks,此时应使用 “crypto/subtle” 包中的 subtle.ConstantTimeCompare() 等函数
reflect.DeepEqual()认为空 slice 与 nil slice 并不相等,但注意byte.Equal()会认为二者相等:
func main() {var b1 []byte = nilb2 := []byte{}// b1 与 b2 长度相等、有相同的字节序// nil 与 slice 在字节上是相同的fmt.Println("b1 == b2: ", bytes.Equal(b1, b2)) // true}
39. 从 panic 中恢复
在一个 defer 延迟执行的函数中调用 recover() ,它便能捕捉 / 中断 panic
// 错误的 recover 调用示例func main() {recover() // 什么都不会捕捉panic("not good") // 发生 panic,主程序退出recover() // 不会被执行println("ok")}// 正确的 recover 调用示例func main() {defer func() {fmt.Println("recovered: ", recover())}()panic("not good")}
从上边可以看出,recover() 仅在 defer 执行的函数中调用才会生效。
// 错误的调用示例func main() {defer func() {doRecover()}()panic("not good")}func doRecover() {fmt.Println("recobered: ", recover())}
recobered: panic: not good
40. 在 range 迭代 slice、array、map 时通过更新引用来更新元素
在 range 迭代中,得到的值其实是元素的一份值拷贝,更新拷贝并不会更改原来的元素,即是拷贝的地址并不是原有元素的地址:
func main() {data := []int{1, 2, 3}for _, v := range data {v *= 10 // data 中原有元素是不会被修改的}fmt.Println("data: ", data) // data: [1 2 3]}
如果要修改原有元素的值,应该使用索引直接访问:
func main() {data := []int{1, 2, 3}for i, v := range data {data[i] = v * 10}fmt.Println("data: ", data) // data: [10 20 30]}
如果你的集合保存的是指向值的指针,需稍作修改。依旧需要使用索引访问元素,不过可以使用 range 出来的元素直接更新原有值:
func main() {data := []*struct{ num int }{{1}, {2}, {3},}for _, v := range data {v.num *= 10 // 直接使用指针更新}fmt.Println(data[0], data[1], data[2]) // &{10} &{20} &{30}}
41. slice 中隐藏的数据
从 slice 中重新切出新 slice 时,新 slice 会引用原 slice 的底层数组。如果跳了这个坑,程序可能会分配大量的临时 slice 来指向原底层数组的部分数据,将导致难以预料的内存使用。
func get() []byte {raw := make([]byte, 10000)fmt.Println(len(raw), cap(raw), &raw[0]) // 10000 10000 0xc420080000return raw[:3] // 重新分配容量为 10000 的 slice}func main() {data := get()fmt.Println(len(data), cap(data), &data[0]) // 3 10000 0xc420080000}
可以通过拷贝临时 slice 的数据,而不是重新切片来解决:
func get() (res []byte) {raw := make([]byte, 10000)fmt.Println(len(raw), cap(raw), &raw[0]) // 10000 10000 0xc420080000res = make([]byte, 3)copy(res, raw[:3])return}func main() {data := get()fmt.Println(len(data), cap(data), &data[0]) // 3 3 0xc4200160b8}
42. Slice 中数据的误用
举个简单例子,重写文件路径(存储在 slice 中)
分割路径来指向每个不同级的目录,修改第一个目录名再重组子目录名,创建新路径:
// 错误使用 slice 的拼接示例func main() {path := []byte("AAAA/BBBBBBBBB")sepIndex := bytes.IndexByte(path, '/') // 4println(sepIndex)dir1 := path[:sepIndex]dir2 := path[sepIndex+1:]println("dir1: ", string(dir1)) // AAAAprintln("dir2: ", string(dir2)) // BBBBBBBBBdir1 = append(dir1, "suffix"...)println("current path: ", string(path)) // AAAAsuffixBBBBpath = bytes.Join([][]byte{dir1, dir2}, []byte{'/'})println("dir1: ", string(dir1)) // AAAAsuffixprintln("dir2: ", string(dir2)) // uffixBBBBprintln("new path: ", string(path)) // AAAAsuffix/uffixBBBB // 错误结果}
拼接的结果不是正确的 AAAAsuffix/BBBBBBBBB,因为 dir1、 dir2 两个 slice 引用的数据都是 path 的底层数组,第 13 行修改 dir1 同时也修改了 path,也导致了 dir2 的修改
解决方法:
重新分配新的 slice 并拷贝你需要的数据
使用完整的 slice 表达式:
input[low:high:max],容量便调整为 max - low
// 使用 full slice expressionfunc main() {path := []byte("AAAA/BBBBBBBBB")sepIndex := bytes.IndexByte(path, '/') // 4dir1 := path[:sepIndex:sepIndex] // 此时 cap(dir1) 指定为4, 而不是先前的 16dir2 := path[sepIndex+1:]dir1 = append(dir1, "suffix"...)path = bytes.Join([][]byte{dir1, dir2}, []byte{'/'})println("dir1: ", string(dir1)) // AAAAsuffixprintln("dir2: ", string(dir2)) // BBBBBBBBBprintln("new path: ", string(path)) // AAAAsuffix/BBBBBBBBB}
第 6 行中第三个参数是用来控制 dir1 的新容量,再往 dir1 中 append 超额元素时,将分配新的 buffer 来保存。而不是覆盖原来的 path 底层数组
43. 旧 slice
当你从一个已存在的 slice 创建新 slice 时,二者的数据指向相同的底层数组。如果你的程序使用这个特性,那需要注意 “旧”(stale) slice 问题。
某些情况下,向一个 slice 中追加元素而它指向的底层数组容量不足时,将会重新分配一个新数组来存储数据。而其他 slice 还指向原来的旧底层数组。
// 超过容量将重新分配数组来拷贝值、重新存储func main() {s1 := []int{1, 2, 3}fmt.Println(len(s1), cap(s1), s1) // 3 3 [1 2 3 ]s2 := s1[1:]fmt.Println(len(s2), cap(s2), s2) // 2 2 [2 3]for i := range s2 {s2[i] += 20}// 此时的 s1 与 s2 是指向同一个底层数组的fmt.Println(s1) // [1 22 23]fmt.Println(s2) // [22 23]s2 = append(s2, 4) // 向容量为 2 的 s2 中再追加元素,此时将分配新数组来存for i := range s2 {s2[i] += 10}fmt.Println(s1) // [1 22 23] // 此时的 s1 不再更新,为旧数据fmt.Println(s2) // [32 33 14]}
44. 类型声明与方法
从一个现有的非 interface 类型创建新类型时,并不会继承原有的方法:
// 定义 Mutex 的自定义类型type myMutex sync.Mutexfunc main() {var mtx myMutexmtx.Lock()mtx.UnLock()}
mtx.Lock undefined (type myMutex has no field or method Lock)…
如果你需要使用原类型的方法,可将原类型以匿名字段的形式嵌到你定义的新 struct 中:
// 类型以字段形式直接嵌入type myLocker struct {sync.Mutex}func main() {var locker myLockerlocker.Lock()locker.Unlock()}
interface 类型声明也保留它的方法集:
type myLocker sync.Lockerfunc main() {var locker myLockerlocker.Lock()locker.Unlock()}
45. 跳出 for-switch 和 for-select 代码块
没有指定标签的 break 只会跳出 switch/select 语句,若不能使用 return 语句跳出的话,可为 break 跳出标签指定的代码块:
// break 配合 label 跳出指定代码块func main() {loop:for {switch {case true:fmt.Println("breaking out...")//break // 死循环,一直打印 breaking out...break loop}}fmt.Println("out...")}
goto 虽然也能跳转到指定位置,但依旧会再次进入 for-switch,死循环。
46. for 语句中的迭代变量与闭包函数
for 语句中的迭代变量在每次迭代中都会重用,即 for 中创建的闭包函数接收到的参数始终是同一个变量,在 goroutine 开始执行时都会得到同一个迭代值:
func main() {data := []string{"one", "two", "three"}for _, v := range data {go func() {fmt.Println(v)}()}time.Sleep(3 * time.Second)// 输出 three three three}
最简单的解决方法:无需修改 goroutine 函数,在 for 内部使用局部变量保存迭代值,再传参:
func main() {data := []string{"one", "two", "three"}for _, v := range data {vCopy := vgo func() {fmt.Println(vCopy)}()}time.Sleep(3 * time.Second)// 输出 one two three}
另一个解决方法:直接将当前的迭代值以参数形式传递给匿名函数:
func main() {data := []string{"one", "two", "three"}for _, v := range data {go func(in string) {fmt.Println(in)}(v)}time.Sleep(3 * time.Second)// 输出 one two three}
注意下边这个稍复杂的 3 个示例区别:
type field struct {name string}func (p *field) print() {fmt.Println(p.name)}// 错误示例func main() {data := []field{{"one"}, {"two"}, {"three"}}for _, v := range data {go v.print()}time.Sleep(3 * time.Second)// 输出 three three three}// 正确示例func main() {data := []field{{"one"}, {"two"}, {"three"}}for _, v := range data {v := vgo v.print()}time.Sleep(3 * time.Second)// 输出 one two three}// 正确示例func main() {data := []*field{{"one"}, {"two"}, {"three"}}for _, v := range data { // 此时迭代值 v 是三个元素值的地址,每次 v 指向的值不同go v.print()}time.Sleep(3 * time.Second)// 输出 one two three}
47. defer 函数的参数值
对 defer 延迟执行的函数,它的参数会在声明时候就会求出具体值,而不是在执行时才求值:
// 在 defer 函数中参数会提前求值func main() {var i = 1defer fmt.Println("result: ", func() int { return i * 2 }())i++}
result: 2
48. defer 函数的执行时机
对 defer 延迟执行的函数,会在调用它的函数结束时执行,而不是在调用它的语句块结束时执行,注意区分开。
比如在一个长时间执行的函数里,内部 for 循环中使用 defer 来清理每次迭代产生的资源调用,就会出现问题:
// 命令行参数指定目录名// 遍历读取目录下的文件func main() {if len(os.Args) != 2 {os.Exit(1)}dir := os.Args[1]start, err := os.Stat(dir)if err != nil || !start.IsDir() {os.Exit(2)}var targets []stringfilepath.Walk(dir, func(fPath string, fInfo os.FileInfo, err error) error {if err != nil {return err}if !fInfo.Mode().IsRegular() {return nil}targets = append(targets, fPath)return nil})for _, target := range targets {f, err := os.Open(target)if err != nil {fmt.Println("bad target:", target, "error:", err) //error:too many open filesbreak}defer f.Close() // 在每次 for 语句块结束时,不会关闭文件资源// 使用 f 资源}}
先创建 10000 个文件:
#!/bin/bashfor n in {1..10000}; doecho content > "file${n}.txt"done
运行效果:
![[转]Golang 新手可能会踩的 50 个坑 - 图10](http://p2j5s8fmr.bkt.clouddn.com/file-open-errors.png#width=)
解决办法:defer 延迟执行的函数写入匿名函数中:
// 目录遍历正常func main() {// ...for _, target := range targets {func() {f, err := os.Open(target)if err != nil {fmt.Println("bad target:", target, "error:", err)return // 在匿名函数内使用 return 代替 break 即可}defer f.Close() // 匿名函数执行结束,调用关闭文件资源// 使用 f 资源}()}}
当然你也可以去掉 defer,在文件资源使用完毕后,直接调用 f.Close() 来关闭。
49. 失败的类型断言
在类型断言语句中,断言失败则会返回目标类型的“零值”,断言变量与原来变量混用可能出现异常情况:
// 错误示例func main() {var data interface{} = "great"// data 混用if data, ok := data.(int); ok {fmt.Println("[is an int], data: ", data)} else {fmt.Println("[not an int], data: ", data) // [isn't a int], data: 0}}// 正确示例func main() {var data interface{} = "great"if res, ok := data.(int); ok {fmt.Println("[is an int], data: ", res)} else {fmt.Println("[not an int], data: ", data) // [not an int], data: great}}
50. 阻塞的 gorutinue 与资源泄露
在 2012 年 Google I/O 大会上,Rob Pike 的 Go Concurrency Patterns 演讲讨论 Go 的几种基本并发模式,如 完整代码 中从数据集中获取第一条数据的函数:
func First(query string, replicas []Search) Result {c := make(chan Result)replicaSearch := func(i int) { c <- replicas[i](query) }for i := range replicas {go replicaSearch(i)}return <-c}
在搜索重复时依旧每次都起一个 goroutine 去处理,每个 goroutine 都把它的搜索结果发送到结果 channel 中,channel 中收到的第一条数据会直接返回。
返回完第一条数据后,其他 goroutine 的搜索结果怎么处理?他们自己的协程如何处理?
在 First() 中的结果 channel 是无缓冲的,这意味着只有第一个 goroutine 能返回,由于没有 receiver,其他的 goroutine 会在发送上一直阻塞。如果你大量调用,则可能造成资源泄露。
为避免泄露,你应该确保所有的 goroutine 都能正确退出,有 2 个解决方法:
- 使用带缓冲的 channel,确保能接收全部 goroutine 的返回结果:
func First(query string, replicas ...Search) Result {c := make(chan Result,len(replicas))searchReplica := func(i int) { c <- replicas[i](query) }for i := range replicas {go searchReplica(i)}return <-c}
- 使用
select语句,配合能保存一个缓冲值的 channeldefault语句:
default 的缓冲 channel 保证了即使结果 channel 收不到数据,也不会阻塞 goroutine
func First(query string, replicas ...Search) Result {c := make(chan Result,1)searchReplica := func(i int) {select {case c <- replicas[i](query):default:}}for i := range replicas {go searchReplica(i)}return <-c}
- 使用特殊的废弃(cancellation) channel 来中断剩余 goroutine 的执行:
func First(query string, replicas ...Search) Result {c := make(chan Result)done := make(chan struct{})defer close(done)searchReplica := func(i int) {select {case c <- replicas[i](query):case <- done:}}for i := range replicas {go searchReplica(i)}return <-c}
Rob Pike 为了简化演示,没有提及演讲代码中存在的这些问题。不过对于新手来说,可能会不加思考直接使用。
高级篇:51-57
51. 使用指针作为方法的 receiver
只要值是可寻址的,就可以在值上直接调用指针方法。即是对一个方法,它的 receiver 是指针就足矣。
但不是所有值都是可寻址的,比如 map 类型的元素、通过 interface 引用的变量:
type data struct {name string}type printer interface {print()}func (p *data) print() {fmt.Println("name: ", p.name)}func main() {d1 := data{"one"}d1.print() // d1 变量可寻址,可直接调用指针 receiver 的方法var in printer = data{"two"}in.print() // 类型不匹配m := map[string]data{"x": data{"three"},}m["x"].print() // m["x"] 是不可寻址的 // 变动频繁}
cannot use data literal (type data) as type printer in assignment:
data does not implement printer (print method has pointer receiver)
cannot call pointer method on m[“x”]
cannot take the address of m[“x”]
52. 更新 map 字段的值
如果 map 一个字段的值是 struct 类型,则无法直接更新该 struct 的单个字段:
// 无法直接更新 struct 的字段值type data struct {name string}func main() {m := map[string]data{"x": {"Tom"},}m["x"].name = "Jerry"}
cannot assign to struct field m[“x”].name in map
因为 map 中的元素是不可寻址的。需区分开的是,slice 的元素可寻址:
type data struct {name string}func main() {s := []data{{"Tom"}}s[0].name = "Jerry"fmt.Println(s) // [{Jerry}]}
注意:不久前 gccgo 编译器可更新 map struct 元素的字段值,不过很快便修复了,官方认为是 Go1.3 的潜在特性,无需及时实现,依旧在 todo list 中。
更新 map 中 struct 元素的字段值,有 2 个方法:
- 使用局部变量
// 提取整个 struct 到局部变量中,修改字段值后再整个赋值type data struct {name string}func main() {m := map[string]data{"x": {"Tom"},}r := m["x"]r.name = "Jerry"m["x"] = rfmt.Println(m) // map[x:{Jerry}]}
- 使用指向元素的 map 指针
func main() {m := map[string]*data{"x": {"Tom"},}m["x"].name = "Jerry" // 直接修改 m["x"] 中的字段fmt.Println(m["x"]) // &{Jerry}}
但是要注意下边这种误用:
func main() {m := map[string]*data{"x": {"Tom"},}m["z"].name = "what???"fmt.Println(m["x"])}
panic: runtime error: invalid memory address or nil pointer dereference
53. nil interface 和 nil interface 值
虽然 interface 看起来像指针类型,但它不是。interface 类型的变量只有在类型和值均为 nil 时才为 nil
如果你的 interface 变量的值是跟随其他变量变化的(雾),与 nil 比较相等时小心:
func main() {var data *bytevar in interface{}fmt.Println(data, data == nil) // <nil> truefmt.Println(in, in == nil) // <nil> truein = datafmt.Println(in, in == nil) // <nil> false // data 值为 nil,但 in 值不为 nil}
如果你的函数返回值类型是 interface,更要小心这个坑:
// 错误示例func main() {doIt := func(arg int) interface{} {var result *struct{} = nilif arg > 0 {result = &struct{}{}}return result}if res := doIt(-1); res != nil {fmt.Println("Good result: ", res) // Good result: <nil>fmt.Printf("%T\n", res) // *struct {} // res 不是 nil,它的值为 nilfmt.Printf("%v\n", res) // <nil>}}// 正确示例func main() {doIt := func(arg int) interface{} {var result *struct{} = nilif arg > 0 {result = &struct{}{}} else {return nil // 明确指明返回 nil}return result}if res := doIt(-1); res != nil {fmt.Println("Good result: ", res)} else {fmt.Println("Bad result: ", res) // Bad result: <nil>}}
54. 堆栈变量
你并不总是清楚你的变量是分配到了堆还是栈。
在 C++ 中使用 new 创建的变量总是分配到堆内存上的,但在 Go 中即使使用 new()、make() 来创建变量,变量为内存分配位置依旧归 Go 编译器管。
Go 编译器会根据变量的大小及其 “escape analysis” 的结果来决定变量的存储位置,故能准确返回本地变量的地址,这在 C/C++ 中是不行的。
在 go build 或 go run 时,加入 -m 参数,能准确分析程序的变量分配位置: ![[转]Golang 新手可能会踩的 50 个坑 - 图11](http://p2j5s8fmr.bkt.clouddn.com/allocation.png#width=)
55. GOMAXPROCS、Concurrency(并发)and Parallelism(并行)
Go 1.4 及以下版本,程序只会使用 1 个执行上下文 / OS 线程,即任何时间都最多只有 1 个 goroutine 在执行。
Go 1.5 版本将可执行上下文的数量设置为 runtime.NumCPU() 返回的逻辑 CPU 核心数,这个数与系统实际总的 CPU 逻辑核心数是否一致,取决于你的 CPU 分配给程序的核心数,可以使用 GOMAXPROCS 环境变量或者动态的使用 runtime.GOMAXPROCS() 来调整。
误区:GOMAXPROCS 表示执行 goroutine 的 CPU 核心数,参考文档
GOMAXPROCS 的值是可以超过 CPU 的实际数量的,在 1.5 中最大为 256
func main() {fmt.Println(runtime.GOMAXPROCS(-1)) // 4fmt.Println(runtime.NumCPU()) // 4runtime.GOMAXPROCS(20)fmt.Println(runtime.GOMAXPROCS(-1)) // 20runtime.GOMAXPROCS(300)fmt.Println(runtime.GOMAXPROCS(-1)) // Go 1.9.2 // 300}
56. 读写操作的重新排序
Go 可能会重排一些操作的执行顺序,可以保证在一个 goroutine 中操作是顺序执行的,但不保证多 goroutine 的执行顺序:
var _ = runtime.GOMAXPROCS(3)var a, b intfunc u1() {a = 1b = 2}func u2() {a = 3b = 4}func p() {println(a)println(b)}func main() {go u1() // 多个 goroutine 的执行顺序不定go u2()go p()time.Sleep(1 * time.Second)}
运行效果:
![[转]Golang 新手可能会踩的 50 个坑 - 图12](http://p2j5s8fmr.bkt.clouddn.com/reorder.png#width=)
如果你想保持多 goroutine 像代码中的那样顺序执行,可以使用 channel 或 sync 包中的锁机制等。
57. 优先调度
你的程序可能出现一个 goroutine 在运行时阻止了其他 goroutine 的运行,比如程序中有一个不让调度器运行的 for 循环:
func main() {done := falsego func() {done = true}()for !done {}println("done !")}
for 的循环体不必为空,但如果代码不会触发调度器执行,将出现问题。
调度器会在 GC、Go 声明、阻塞 channel、阻塞系统调用和锁操作后再执行,也会在非内联函数调用时执行:
func main() {done := falsego func() {done = true}()for !done {println("not done !") // 并不内联执行}println("done !")}
可以添加 -m 参数来分析 for 代码块中调用的内联函数:
![[转]Golang 新手可能会踩的 50 个坑 - 图13](http://p2j5s8fmr.bkt.clouddn.com/not-inlined.png#width=)
你也可以使用 runtime 包中的 Gosched() 来 手动启动调度器:
func main() {done := falsego func() {done = true}()for !done {runtime.Gosched()}println("done !")}
运行效果:
![[转]Golang 新手可能会踩的 50 个坑 - 图14](http://p2j5s8fmr.bkt.clouddn.com/gosched.png#width=)
