数据结构概念:数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。
常用数据结构:数组(Array)、栈(Stack)、队列(Queue)、链表(Linked List)、树(Tree)、图(Graph)、堆(Heap)、散列表(Hash)
算法的意义: 算法研究的目的是为了更有效的处理数据,提高数据运算效率。数据的运算是定义在数据的逻辑结构上,但运算的具体实现要在存储结构上进行。
一、树的遍历
树的遍历分为两类:
- 深度优先(DFS)
- 前序遍历
- 中序遍历
- 后序遍历
- 广度优先(BFS)
- 层次遍历
准备:定义节点
public class TreeNode {
String value = null; // 根节点
TreeNode leftChildren = null; // 左子节点
TreeNode rightChildren = null; // 右子节点
public TreeNode(String value, TreeNode leftChildren, TreeNode rightChildren) {
this.value = value;
this.leftChildren = leftChildren;
this.rightChildren = rightChildren;
}
public TreeNode(String value) {
this.value = value;
}
public void setValue(String value) {
this.value = value;
}
public void setLeftChildren(TreeNode leftChildren) {
this.leftChildren = leftChildren;
}
public void setRightChildren(TreeNode rightChildren) {
this.rightChildren = rightChildren;
}
public String getValue() {
return value;
}
public TreeNode getLeftChildren() {
return leftChildren;
}
public TreeNode getRightChildren() {
return rightChildren;
}
}
1、深度优先(DFS)
1.1、前序遍历
思路:先根节点->左子树->右子树;
结构如下:```java
- 层次遍历
public class TreeSearch {
public TreeNode getTargetTree() {
// 叶子节点
TreeNode G = new TreeNode("G");
TreeNode D = new TreeNode("D");
TreeNode E = new TreeNode("E", G, null);
TreeNode B = new TreeNode("B", D, E);
TreeNode H = new TreeNode("H");
TreeNode I = new TreeNode("I");
TreeNode F = new TreeNode("F", H, I);
TreeNode C = new TreeNode("C", null, F);
// 构造根节点
TreeNode root = new TreeNode("A", B, C);
return root;
}
/**
* 前序遍历 先根节点->左子树->右子树;
*/
public void preOrderVisitTreeNode(TreeNode node) {
if (null != node) {
System.out.print(node.value);
if (null != node.getLeftChildren()) {
preOrderVisitTreeNode(node.getLeftChildren());
}
if (null != node.getRightChildren()) {
preOrderVisitTreeNode(node.getRightChildren());
}
}
}
public static void main(String[] args) {
TreeTest treeSearch = new TreeTest();
TreeNode tree = treeSearch.getTargetTree();
System.out.print("前序遍历:");
treeSearch.preOrderVisitTreeNode(tree);
System.out.println("");
}
} //先序遍历:ABDEGCFHI
**1.2、中序遍历**<br /> 思路:先左子树->根节点->右子树;<br />
```java
public class TreeSearch {
public TreeNode getTargetTree() {
// 叶子节点
TreeNode G = new TreeNode("G");
TreeNode D = new TreeNode("D");
TreeNode E = new TreeNode("E", G, null);
TreeNode B = new TreeNode("B", D, E);
TreeNode H = new TreeNode("H");
TreeNode I = new TreeNode("I");
TreeNode F = new TreeNode("F", H, I);
TreeNode C = new TreeNode("C", null, F);
// 构造根节点
TreeNode root = new TreeNode("A", B, C);
return root;
}
/**
* 中序遍历 先左子树->根节点->右子树;
*/
public void inorderVisitTreeNode(TreeNode node) {
if (null != node) {
if (null != node.getLeftChildren()) {
inorderVisitTreeNode(node.getLeftChildren());
}
System.out.print(node.value);
if (null != node.getRightChildren()) {
inorderVisitTreeNode(node.getRightChildren());
}
}
}
public static void main(String[] args) {
TreeTest treeSearch = new TreeTest();
TreeNode tree = treeSearch.getTargetTree();
System.out.print("中序遍历:");
treeSearch.inorderVisitTreeNode(tree);
System.out.println("");
}
}
//中序遍历:DBGEACHFI
1.3、后续遍历
思路:先左子树->右子树->根节点;
public class TreeSearch {
public TreeNode getTargetTree() {
// 叶子节点
TreeNode G = new TreeNode("G");
TreeNode D = new TreeNode("D");
TreeNode E = new TreeNode("E", G, null);
TreeNode B = new TreeNode("B", D, E);
TreeNode H = new TreeNode("H");
TreeNode I = new TreeNode("I");
TreeNode F = new TreeNode("F", H, I);
TreeNode C = new TreeNode("C", null, F);
// 构造根节点
TreeNode root = new TreeNode("A", B, C);
return root;
}
/**
* 后序遍历 先左子树->右子树->根节点;
*/
public void postOrderVisitTreeNode(TreeNode node) {
if (null != node) {
if (null != node.getLeftChildren()) {
postOrderVisitTreeNode(node.getLeftChildren());
}
if (null != node.getRightChildren()) {
postOrderVisitTreeNode(node.getRightChildren());
}
System.out.print(node.value);
}
}
public static void main(String[] args) {
TreeTest treeSearch = new TreeTest();
TreeNode tree= treeSearch.getTargetTree();
System.out.print("后序遍历:");
treeSearch.postOrderVisitTreeNode(tree);
System.out.println("");
}
//结果:后序遍历:DGEBHIFCA
2、广度优先
2.1、层次遍历
思路:先根节点,然后第二层,第三层,依次往下走,(同层节点从左往右输出);
层序遍历:ABCDEFGHI
层序遍历二叉树,是非递归的队列实现的,就是利用队列的先进先出(FIFO)实现的。
public class TreeTest {
public TreeNode getTargetTree() {
// 叶子节点
TreeNode G = new TreeNode("G");
TreeNode D = new TreeNode("D");
TreeNode E = new TreeNode("E", G, null);
TreeNode B = new TreeNode("B", D, E);
TreeNode H = new TreeNode("H");
TreeNode I = new TreeNode("I");
TreeNode F = new TreeNode("F", H, I);
TreeNode C = new TreeNode("C", null, F);
// 构造根节点
TreeNode root = new TreeNode("A", B, C);
return root;
}
/**
* 层次遍历
*/
public void levelOrderVisitTreeNode(TreeNode node) {
if (null != node) {
LinkedList<TreeNode> list = new LinkedList<>();
list.add(node);
TreeNode currentNode;
while (!list.isEmpty()) {
currentNode = list.poll();
System.out.print(currentNode.value);
if (null != currentNode.getLeftChildren()) {
list.add(currentNode.getLeftChildren());
}
if (null != currentNode.getRightChildren()) {
list.add(currentNode.getRightChildren());
}
}
}
}
public static void main(String[] args) {
TreeTest treeSearch = new TreeTest();
TreeNode tree = treeSearch.getTargetTree();
System.out.print("层次遍历:");
treeSearch.levelOrderVisitTreeNode(tree);
}
}