TypeScript 的官方文档早已更新,但我能找到的中文文档都还停留在比较老的版本。所以对其中新增以及修订较多的一些章节进行了翻译整理。
本篇翻译整理自 TypeScript Handbook 中 「Classes」 章节。
本文并不严格按照原文翻译,对部分内容也做了解释补充。
类(Classes)
TypeScript 完全支持 ES2015 引入的 class 关键字。
和其他 JavaScript 语言特性一样,TypeScript 提供了类型注解和其他语法,允许你表达类与其他类型之间的关系。
类成员(Class Members)
这是一个最基本的类,一个空类:
class Point {}
字段(Fields)
一个字段声明会创建一个公共(public)可写入(writeable)的属性:
class Point {x: number;y: number;}const pt = new Point();pt.x = 0;pt.y = 0;
注意:类型注解是可选的,如果没有指定,会隐式的设置为 any。
字段可以设置初始值(initializers):
class Point {x = 0;y = 0;}const pt = new Point();// Prints 0, 0console.log(`${pt.x}, ${pt.y}`);
就像 const 、let 和 var ,一个类属性的初始值会被用于推断它的类型:
const pt = new Point();pt.x = "0";// Type 'string' is not assignable to type 'number'.
—strictPropertyInitialization
strictPropertyInitialization 选项控制了类字段是否需要在构造函数里初始化:
class BadGreeter {name: string;// Property 'name' has no initializer and is not definitely assigned in the constructor.}
class GoodGreeter {name: string;constructor() {this.name = "hello";}}
注意,字段需要在构造函数自身进行初始化。TypeScript 并不会分析构造函数里你调用的方法,进而判断初始化的值,因为一个派生类也许会覆盖这些方法并且初始化成员失败:
class BadGreeter {name: string;// Property 'name' has no initializer and is not definitely assigned in the constructor.setName(): void {this.name = '123'}constructor() {this.setName();}}
如果你执意要通过其他方式初始化一个字段,而不是在构造函数里(举个例子,引入外部库为你补充类的部分内容),你可以使用明确赋值断言操作符(definite assignment assertion operator) !:
class OKGreeter {// Not initialized, but no errorname!: string;}
readonly
字段可以添加一个 readonly 前缀修饰符,这会阻止在构造函数之外的赋值。
class Greeter {readonly name: string = "world";constructor(otherName?: string) {if (otherName !== undefined) {this.name = otherName;}}err() {this.name = "not ok";// Cannot assign to 'name' because it is a read-only property.}}const g = new Greeter();g.name = "also not ok";// Cannot assign to 'name' because it is a read-only property.
构造函数(Constructors)
类的构造函数跟函数非常类似,你可以使用带类型注解的参数、默认值、重载等。
class Point {x: number;y: number;// Normal signature with defaultsconstructor(x = 0, y = 0) {this.x = x;this.y = y;}}
class Point {// Overloadsconstructor(x: number, y: string);constructor(s: string);constructor(xs: any, y?: any) {// TBD}}
但类构造函数签名与函数签名之间也有一些区别:
- 构造函数不能有类型参数(关于类型参数,回想下泛型里的内容),这些属于外层的类声明,我们稍后就会学习到。
- 构造函数不能有返回类型注解,因为总是返回类实例类型
Super 调用(Super Calls)
就像在 JavaScript 中,如果你有一个基类,你需要在使用任何 this. 成员之前,先在构造函数里调用 super()。
class Base {k = 4;}class Derived extends Base {constructor() {// Prints a wrong value in ES5; throws exception in ES6console.log(this.k);// 'super' must be called before accessing 'this' in the constructor of a derived class.super();}}
忘记调用 super 是 JavaScript 中一个简单的错误,但是 TypeScript 会在需要的时候提醒你。
方法(Methods)
类中的函数属性被称为方法。方法跟函数、构造函数一样,使用相同的类型注解。
class Point {x = 10;y = 10;scale(n: number): void {this.x *= n;this.y *= n;}}
除了标准的类型注解,TypeScript 并没有给方法添加任何新的东西。
注意在一个方法体内,它依然可以通过 this. 访问字段和其他的方法。方法体内一个未限定的名称(unqualified name,没有明确限定作用域的名称)总是指向闭包作用域里的内容。
let x: number = 0;class C {x: string = "hello";m() {// This is trying to modify 'x' from line 1, not the class propertyx = "world";// Type 'string' is not assignable to type 'number'.}}
Getters / Setter
类也可以有存取器(accessors):
class C {_length = 0;get length() {return this._length;}set length(value) {this._length = value;}}
TypeScript 对存取器有一些特殊的推断规则:
- 如果
get存在而set不存在,属性会被自动设置为readonly - 如果 setter 参数的类型没有指定,它会被推断为 getter 的返回类型
- getters 和 setters 必须有相同的成员可见性(Member Visibility)。
从 TypeScript 4.3 起,存取器在读取和设置的时候可以使用不同的类型。
class Thing {_size = 0;// 注意这里返回的是 number 类型get size(): number {return this._size;}// 注意这里允许传入的是 string | number | boolean 类型set size(value: string | number | boolean) {let num = Number(value);// Don't allow NaN, Infinity, etcif (!Number.isFinite(num)) {this._size = 0;return;}this._size = num;}}
索引签名(Index Signatures)
类可以声明索引签名,它和对象类型的索引签名是一样的:
class MyClass {[s: string]: boolean | ((s: string) => boolean);check(s: string) {return this[s] as boolean;}}
因为索引签名类型也需要捕获方法的类型,这使得并不容易有效的使用这些类型。通常的来说,在其他地方存储索引数据而不是在类实例本身,会更好一些。
类继承(Class Heritage)
implements 语句(implements Clauses)
你可以使用 implements 语句检查一个类是否满足一个特定的 interface。如果一个类没有正确的实现(implement)它,TypeScript 会报错:
interface Pingable {ping(): void;}class Sonar implements Pingable {ping() {console.log("ping!");}}class Ball implements Pingable {// Class 'Ball' incorrectly implements interface 'Pingable'.// Property 'ping' is missing in type 'Ball' but required in type 'Pingable'.pong() {console.log("pong!");}}
类也可以实现多个接口,比如 class C implements A, B {
注意事项(Cautions)
implements 语句仅仅检查类是否按照接口类型实现,但它并不会改变类的类型或者方法的类型。一个常见的错误就是以为 implements 语句会改变类的类型——然而实际上它并不会:
interface Checkable {check(name: string): boolean;}class NameChecker implements Checkable {check(s) {// Parameter 's' implicitly has an 'any' type.// Notice no error herereturn s.toLowercse() === "ok";// any}
在这个例子中,我们可能会以为 s 的类型会被 check 的 name: string 参数影响。实际上并没有,implements 语句并不会影响类的内部是如何检查或者类型推断的。
类似的,实现一个有可选属性的接口,并不会创建这个属性:
interface A {x: number;y?: number;}class C implements A {x = 0;}const c = new C();c.y = 10;// Property 'y' does not exist on type 'C'.
extends 语句(extends Clauses)
类可以 extend 一个基类。一个派生类有基类所有的属性和方法,还可以定义额外的成员。
class Animal {move() {console.log("Moving along!");}}class Dog extends Animal {woof(times: number) {for (let i = 0; i < times; i++) {console.log("woof!");}}}const d = new Dog();// Base class methodd.move();// Derived class methodd.woof(3);
覆写属性(Overriding Methods)
一个派生类可以覆写一个基类的字段或属性。你可以使用 super 语法访问基类的方法。
TypeScript 强制要求派生类总是它的基类的子类型。
举个例子,这是一个合法的覆写方法的方式:
class Base {greet() {console.log("Hello, world!");}}class Derived extends Base {greet(name?: string) {if (name === undefined) {super.greet();} else {console.log(`Hello, ${name.toUpperCase()}`);}}}const d = new Derived();d.greet();d.greet("reader");
派生类需要遵循着它的基类的实现。
而且通过一个基类引用指向一个派生类实例,这是非常常见并合法的:
// Alias the derived instance through a base class referenceconst b: Base = d;// No problemb.greet();
但是如果 Derived 不遵循 Base 的约定实现呢?
class Base {greet() {console.log("Hello, world!");}}class Derived extends Base {// Make this parameter requiredgreet(name: string) {// Property 'greet' in type 'Derived' is not assignable to the same property in base type 'Base'.// Type '(name: string) => void' is not assignable to type '() => void'.console.log(`Hello, ${name.toUpperCase()}`);}}
即便我们忽视错误编译代码,这个例子也会运行错误:
const b: Base = new Derived();// Crashes because "name" will be undefinedb.greet();
初始化顺序(Initialization Order)
有些情况下,JavaScript 类初始化的顺序会让你感到很奇怪,让我们看这个例子:
class Base {name = "base";constructor() {console.log("My name is " + this.name);}}class Derived extends Base {name = "derived";}// Prints "base", not "derived"const d = new Derived();
到底发生了什么呢?
类初始化的顺序,就像在 JavaScript 中定义的那样:
- 基类字段初始化
- 基类构造函数运行
- 派生类字段初始化
- 派生类构造函数运行
这意味着基类构造函数只能看到它自己的 name 的值,因为此时派生类字段初始化还没有运行。
继承内置类型(Inheriting Built-in Types)
注意:如果你不打算继承内置的类型比如
Array、Error、Map等或者你的编译目标是 ES6/ES2015 或者更新的版本,你可以跳过这个章节。
在 ES2015 中,当调用 super(...) 的时候,如果构造函数返回了一个对象,会隐式替换 this 的值。所以捕获 super() 可能的返回值并用 this 替换它是非常有必要的。
这就导致,像 Error、Array 等子类,也许不会再如你期望的那样运行。这是因为 Error、Array 等类似内置对象的构造函数,会使用 ECMAScript 6 的 new.target 调整原型链。然而,在 ECMAScript 5 中,当调用一个构造函数的时候,并没有方法可以确保 new.target 的值。 其他的降级编译器默认也会有同样的限制。
对于一个像下面这样的子类:
class MsgError extends Error {constructor(m: string) {super(m);}sayHello() {return "hello " + this.message;}}
你也许可以发现:
- 对象的方法可能是
undefined,所以调用sayHello会导致错误 instanceof失效,(new MsgError()) instanceof MsgError会返回false。
我们推荐,手动的在 super(...) 调用后调整原型:
class MsgError extends Error {constructor(m: string) {super(m);// Set the prototype explicitly.Object.setPrototypeOf(this, MsgError.prototype);}sayHello() {return "hello " + this.message;}}
不过,任何 MsgError 的子类也不得不手动设置原型。如果运行时不支持 Object.setPrototypeOf,你也许可以使用 __proto__ 。
不幸的是,这些方案并不会能在 IE 10 或者之前的版本正常运行。解决的一个方法是手动拷贝原型中的方法到实例中(就比如 MsgError.prototype 到 this),但是它自己的原型链依然没有被修复。
成员可见性(Member Visibility)
你可以使用 TypeScript 控制某个方法或者属性是否对类以外的代码可见。
public
类成员默认的可见性为 public,一个 public 的成员可以在任何地方被获取:
class Greeter {public greet() {console.log("hi!");}}const g = new Greeter();g.greet();
因为 public 是默认的可见性修饰符,所以你不需要写它,除非处于格式或者可读性的原因。
protected
protected 成员仅仅对子类可见:
class Greeter {public greet() {console.log("Hello, " + this.getName());}protected getName() {return "hi";}}class SpecialGreeter extends Greeter {public howdy() {// OK to access protected member hereconsole.log("Howdy, " + this.getName());}}const g = new SpecialGreeter();g.greet(); // OKg.getName();// Property 'getName' is protected and only accessible within class 'Greeter' and its subclasses.
受保护成员的公开(Exposure of protected members)
派生类需要遵循基类的实现,但是依然可以选择公开拥有更多能力的基类子类型,这就包括让一个 protected 成员变成 public:
class Base {protected m = 10;}class Derived extends Base {// No modifier, so default is 'public'm = 15;}const d = new Derived();console.log(d.m); // OK
这里需要注意的是,如果公开不是故意的,在这个派生类中,我们需要小心的拷贝 protected 修饰符。
交叉等级受保护成员访问(Cross-hierarchy protected access)
不同的 OOP 语言在通过一个基类引用是否可以合法的获取一个 protected 成员是有争议的。
class Base {protected x: number = 1;}class Derived1 extends Base {protected x: number = 5;}class Derived2 extends Base {f1(other: Derived2) {other.x = 10;}f2(other: Base) {other.x = 10;// Property 'x' is protected and only accessible through an instance of class 'Derived2'. This is an instance of class 'Base'.}}
在 Java 中,这是合法的,而 C# 和 C++ 认为这段代码是不合法的。
TypeScript 站在 C# 和 C++ 这边。因为 Derived2 的 x 应该只有从 Derived2 的子类访问才是合法的,而 Derived1 并不是它们中的一个。此外,如果通过 Derived1 访问 x 是不合法的,通过一个基类引用访问也应该是不合法的。
看这篇《Why Can’t I Access A Protected Member From A Derived Class?》,解释了更多 C# 这样做的原因。
private
private 有点像 protected ,但是不允许访问成员,即便是子类。
class Base {private x = 0;}const b = new Base();// Can't access from outside the classconsole.log(b.x);// Property 'x' is private and only accessible within class 'Base'.
class Derived extends Base {showX() {// Can't access in subclassesconsole.log(this.x);// Property 'x' is private and only accessible within class 'Base'.}}
因为 private 成员对派生类并不可见,所以一个派生类也不能增加它的可见性:
class Base {private x = 0;}class Derived extends Base {// Class 'Derived' incorrectly extends base class 'Base'.// Property 'x' is private in type 'Base' but not in type 'Derived'.x = 1;}
交叉实例私有成员访问(Cross-instance private access)
不同的 OOP 语言在关于一个类的不同实例是否可以获取彼此的 private 成员上,也是不一致的。像 Java、C#、C++、Swift 和 PHP 都是允许的,Ruby 是不允许。
TypeScript 允许交叉实例私有成员的获取:
class A {private x = 10;public sameAs(other: A) {// No errorreturn other.x === this.x;}}
警告(Caveats)
private和 protected 仅仅在类型检查的时候才会强制生效。
这意味着在 JavaScript 运行时,像 in 或者简单的属性查找,依然可以获取 private 或者 protected 成员。
class MySafe {private secretKey = 12345;}
// In a JavaScript file...const s = new MySafe();// Will print 12345console.log(s.secretKey);
private 允许在类型检查的时候,通过方括号语法进行访问。这让比如单元测试的时候,会更容易访问 private 字段,这也让这些字段是弱私有(soft private)而不是严格的强制私有。
class MySafe {private secretKey = 12345;}const s = new MySafe();// Not allowed during type checkingconsole.log(s.secretKey);// Property 'secretKey' is private and only accessible within class 'MySafe'.// OKconsole.log(s["secretKey"]);
不像 TypeScript 的 private,JavaScript 的私有字段(#)即便是编译后依然保留私有性,并且不会提供像上面这种方括号获取的方法,这让它们变得强私有(hard private)。
class Dog {#barkAmount = 0;personality = "happy";constructor() {}}
"use strict";class Dog {#barkAmount = 0;personality = "happy";constructor() { }}
当被编译成 ES2021 或者之前的版本,TypeScript 会使用 WeakMaps 替代 #:
"use strict";var _Dog_barkAmount;class Dog {constructor() {_Dog_barkAmount.set(this, 0);this.personality = "happy";}}_Dog_barkAmount = new WeakMap();
如果你需要防止恶意攻击,保护类中的值,你应该使用强私有的机制比如闭包,WeakMaps ,或者私有字段。但是注意,这也会在运行时影响性能。
TypeScript 系列
- TypeScript 之 基础入门
- TypeScript 之 常见类型(上)
- TypeScript 之 常见类型(下)
- TypeScript 之 类型收窄
- TypeScript 之 函数
- TypeScript 之 对象类型
- TypeScript 之 泛型
- TypeScript 之 Keyof 操作符
- TypeScript 之 Typeof 操作符
- TypeScript 之 索引访问类型
- TypeScript 之 条件类型
- TypeScript 之 映射类型
- TypeScript之模板字面量类型
微信:「mqyqingfeng」,加我进冴羽唯一的读者群。
如果有错误或者不严谨的地方,请务必给予指正,十分感谢。如果喜欢或者有所启发,欢迎 star,对作者也是一种鼓励。
