官网3.1版本已经无法找到该指南的链接,其实还是有的,网址:
https://satijalab.org/seurat/v3.1/interaction_vignette.html
载入数据
下面演示了一些与Seurat对象进行交互的有用功能。出于演示目的,我们将使用在第一个指导教程中创建的2700 PBMC对象。您可以在此处下载预先计算的对象。为了模拟有两个重复的情况,将一半命名为“rep1”,另一半命名为”rep2”
library(Seurat)pbmc <- readRDS(file = "../data/pbmc3k_final.rds")# 随机设置两个重复set.seed(42)pbmc$replicate <- sample(c("rep1", "rep2"), size = ncol(pbmc), replace = TRUE)
从细胞聚类和样本重复中切换Idents
# 默认画的是object@ident)DimPlot(pbmc, reduction = "umap")

# 把细胞分类因子先储存到对象中pbmc$CellType <- Idents(pbmc)# 切换IdentsIdents(pbmc) <- "replicate"DimPlot(pbmc, reduction = "umap")

# alternately : DimPlot(pbmc, reduction = 'umap', group.by = 'replicate') you can pass the# shape.by to label points by both replicate and cell type# Switch back to cell type labelsIdents(pbmc) <- "CellType"
分别或同时统计不同聚类或者不同样本来源的细胞数目
# 每个聚类包含多少细胞?table(Idents(pbmc))
#### Naive CD4 T Memory CD4 T CD14+ Mono B CD8 T## 697 483 480 344 271## FCGR3A+ Mono NK DC Platelet## 162 155 32 14
# 每组重复包含多少细胞?table(pbmc$replicate)
#### rep1 rep2## 1348 1290
# 每个聚类细胞数占比prop.table(table(Idents(pbmc)))
#### Naive CD4 T Memory CD4 T CD14+ Mono B CD8 T## 0.264215315 0.183093252 0.181956027 0.130401820 0.102729340## FCGR3A+ Mono NK DC Platelet## 0.061410159 0.058756634 0.012130402 0.005307051
# 样本分组和细胞聚类一起统计table(Idents(pbmc), pbmc$replicate)
#### rep1 rep2## Naive CD4 T 354 343## Memory CD4 T 249 234## CD14+ Mono 232 248## B 173 171## CD8 T 154 117## FCGR3A+ Mono 81 81## NK 81 74## DC 18 14## Platelet 6 8
prop.table(table(Idents(pbmc), pbmc$replicate), margin = 2)
#### rep1 rep2## Naive CD4 T 0.262611276 0.265891473## Memory CD4 T 0.184718101 0.181395349## CD14+ Mono 0.172106825 0.192248062## B 0.128338279 0.132558140## CD8 T 0.114243323 0.090697674## FCGR3A+ Mono 0.060089021 0.062790698## NK 0.060089021 0.057364341## DC 0.013353116 0.010852713## Platelet 0.004451039 0.006201550
提取特定的Seurat子集做亚型分析
# What are the cell names of all NK cells?WhichCells(pbmc, idents = "NK")
## [1] "AAACCGTGTATGCG" "AAATTCGATTCTCA" "AACCTTACGCGAGA" "AACGCCCTCGTACA"## [5] "AACGTCGAGTATCG" "AAGATTACCTCAAG" "AAGCAAGAGCTTAG" "AAGCAAGAGGTGTT"## [9] "AAGTAGGATACAGC" "AATACTGAATTGGC" "AATCCTTGGTGAGG" "AATCTCTGCTTTAC"## [13] "ACAAATTGTTGCGA" "ACAACCGAGGGATG" "ACAATTGATGACTG" "ACACCCTGGTGTTG"## [17] "ACAGGTACTGGTGT" "ACCTGGCTAAGTAG" "ACGAACACCTTGTT" "ACGATCGAGGACTT"## [21] "ACGCAATGGTTCAG" "ACGCTGCTGTTCTT" "ACGGAACTCAGATC" "ACGTGATGTGACAC"## [25] "ACGTTGGAGCCAAT" "ACTGCCACTCCGTC" "ACTGGCCTTCAGTG" "ACTTCAACGTAGGG"## [29] "AGAACAGAAATGCC" "AGATATACCCGTAA" "AGATTCCTGTTCAG" "AGCCTCTGCCAATG"## [33] "AGCGATTGAGATCC" "AGGATGCTTTAGGC" "AGGGACGAGTCAAC" "AGTAATACATCACG"## [37] "AGTCACGATGAGCT" "AGTTTGCTACTGGT" "ATACCACTGCCAAT" "ATACTCTGGTATGC"## [41] "ATCCCGTGCAGTCA" "ATCTTTCTTGTCCC" "ATGAAGGACTTGCC" "ATGATAACTTCACT"## [45] "ATGATATGGTGCTA" "ATGGACACGCATCA" "ATGGGTACATCGGT" "ATTAACGATGAGAA"## [49] "ATTCCAACTTAGGC" "CAAGGTTGTCTGGA" "CAATCTACTGACTG" "CACCACTGGCGAAG"## [53] "CACGGGTGGAGGAC" "CAGATGACATTCTC" "CAGCAATGGAGGGT" "CAGCGGACCTTTAC"## [57] "CAGCTCTGTGTGGT" "CAGTTTACACACGT" "CATCAGGACTTCCG" "CATCAGGATAGCCA"## [61] "CATGAGACGTTGAC" "CATTACACCAACTG" "CATTTCGAGATACC" "CCTCGAACACTTTC"## [65] "CGACCACTAAAGTG" "CGACCACTGCCAAT" "CGAGGCTGACGCTA" "CGCCGAGAGCTTAG"## [69] "CGGCGAACGACAAA" "CGGCGAACTACTTC" "CGGGCATGTCTCTA" "CGTACCTGGCATCA"## [73] "CGTGTAGACGATAC" "CGTGTAGAGTTACG" "CGTGTAGATTCGGA" "CTAAACCTCTGACA"## [77] "CTAACGGAACCGAT" "CTACGCACTGGTCA" "CTACTCCTATGTCG" "CTAGTTACGAAACA"## [81] "CTATACTGCTACGA" "CTATACTGTCTCAT" "CTCGACTGGTTGAC" "CTGAGAACGTAAAG"## [85] "CTTTAGTGACGGGA" "GAACCAACTTCCGC" "GAAGTGCTAAACGA" "GAATGCACCTTCGC"## [89] "GAATTAACGTCGTA" "GACGGCACACGGGA" "GAGCGCTGAAGATG" "GAGGTACTGACACT"## [93] "GAGGTGGATCCTCG" "GATAGAGAAGGGTG" "GATCCCTGACCTTT" "GCACACCTGTGCTA"## [97] "GCACCACTTCCTTA" "GCACTAGAGTCGTA" "GCAGGGCTATCGAC" "GCCGGAACGTTCTT"## [101] "GCCTACACAGTTCG" "GCGCATCTTGCTCC" "GCGCGATGGTGCAT" "GGAAGGTGGCGAGA"## [105] "GGACGCTGTCCTCG" "GGAGGCCTCGTTGA" "GGCAAGGAAAAAGC" "GGCATATGCTTATC"## [109] "GGCCGAACTCTAGG" "GGCTAAACACCTGA" "GGGTTAACGTGCAT" "GGTGGAGAAACGGG"## [113] "GTAGTGTGAGCGGA" "GTCGACCTGAATGA" "GTGATTCTGGTTCA" "GTGTATCTAGTAGA"## [117] "GTTAAAACCGAGAG" "GTTCAACTGGGACA" "GTTGACGATATCGG" "TAACTCACTCTACT"## [121] "TAAGAGGACTTGTT" "TAATGCCTCGTCTC" "TACGGCCTGGGACA" "TACTACTGATGTCG"## [125] "TACTCTGAATCGAC" "TACTGTTGAGGCGA" "TAGCATCTCAGCTA" "TAGCCCACAGCTAC"## [129] "TAGGGACTGAACTC" "TAGTGGTGAAGTGA" "TAGTTAGAACCACA" "TATGAATGGAGGAC"## [133] "TATGGGTGCATCAG" "TATTTCCTGGAGGT" "TCAACACTGTTTGG" "TCAGACGACGTTAG"## [137] "TCCCGAACACAGTC" "TCCTAAACCGCATA" "TCGATTTGCAGCTA" "TCTAACACCAGTTG"## [141] "TGATAAACTCCGTC" "TGCACAGACGACAT" "TGCCACTGCGATAC" "TGCTGAGAGAGCAG"## [145] "TGGAACACAAACAG" "TGGTAGACCCTCAC" "TGTAATGACACAAC" "TGTAATGAGGTAAA"## [149] "TTACTCGATCTACT" "TTAGTCTGCCAACA" "TTCCAAACTCCCAC" "TTCCCACTTGAGGG"## [153] "TTCTAGTGGAGAGC" "TTCTGATGGAGACG" "TTGTCATGGACGGA"
# 提取NK细胞的表达矩阵nk.raw.data <- as.matrix(GetAssayData(pbmc, slot = "counts")[, WhichCells(pbmc, ident = "NK")])# 获取基因表达量大于1的对象subset(pbmc, subset = MS4A1 > 1)
## An object of class Seurat## 13714 features across 414 samples within 1 assay## Active assay: RNA (13714 features)## 2 dimensional reductions calculated: pca, umap
subset(pbmc, subset = replicate == "rep2")
## An object of class Seurat## 13714 features across 1290 samples within 1 assay## Active assay: RNA (13714 features)## 2 dimensional reductions calculated: pca, umap
# 选择两个细胞类型subset(pbmc, idents = c("NK", "B"))
## An object of class Seurat## 13714 features across 499 samples within 1 assay## Active assay: RNA (13714 features)## 2 dimensional reductions calculated: pca, umap
# 排除掉某些细胞类型subset(pbmc, idents = c("NK", "B"), invert = TRUE)
## An object of class Seurat## 13714 features across 2139 samples within 1 assay## Active assay: RNA (13714 features)## 2 dimensional reductions calculated: pca, umap
# note that if you wish to perform additional rounds of clustering after subsetting we recommend# re-running FindVariableFeatures() and ScaleData()
计算基因的平均表达量
# 计算平均表达量cluster.averages <- AverageExpression(pbmc)head(cluster.averages[["RNA"]][, 1:5])
| Native CD4 T | Memory CD4 T | CD14+Mono | B | CD8 T | |
|---|---|---|---|---|---|
| AL627309.1 | 0.0061287 | 0.0059273 | 0.0485434 | 0.0000000 | 0.0205459 |
| AP006222.2 | 0.0000000 | 0.0082061 | 0.0108847 | 0.0000000 | 0.0119149 |
| RP11-206L10.2 | 0.0074531 | 0.0000000 | 0.0000000 | 0.0206503 | 0.0000000 |
| RP11-206L10.9 | 0.0000000 | 0.0000000 | 0.0105012 | 0.0000000 | 0.0000000 |
| LINC00115 | 0.0191189 | 0.0246905 | 0.0375374 | 0.0388854 | 0.0194828 |
| NOC2L | 0.4974632 | 0.3598115 | 0.2725375 | 0.5865349 | 0.5570490 |
# 返回Seurat对象用于下游分析orig.levels <- levels(pbmc)Idents(pbmc) <- gsub(pattern = " ", replacement = "_", x = Idents(pbmc))orig.levels <- gsub(pattern = " ", replacement = "_", x = orig.levels)levels(pbmc) <- orig.levelscluster.averages <- AverageExpression(pbmc, return.seurat = TRUE)cluster.averages
## An object of class Seurat## 13714 features across 9 samples within 1 assay## Active assay: RNA (13714 features)
# How can I plot the average expression of NK cells vs. CD8 T cells? Pass do.hover = T for an# interactive plot to identify gene outliersCellScatter(cluster.averages, cell1 = "NK", cell2 = "CD8_T")

# How can I calculate expression averages separately for each replicate?cluster.averages <- AverageExpression(pbmc, return.seurat = TRUE, add.ident = "replicate")CellScatter(cluster.averages, cell1 = "CD8_T_rep1", cell2 = "CD8_T_rep2")

# You can also plot heatmaps of these 'in silico' bulk datasets to visualize agreement between# replicatesDoHeatmap(cluster.averages, features = unlist(TopFeatures(pbmc[["pca"]], balanced = TRUE)), size = 3,draw.lines = FALSE)

