- Stable Baselines/用户向导/示例
- Create log dir
- Create and wrap the environment
- Add some param noise for exploration
- Because we use parameter noise, we should use a MlpPolicy with layer normalization
- Train the agent
- Create 4 artificial transitions per real transition
- SAC hyperparams:
- DDPG Hyperparams:
- NOTE: it works even without action noise
- n_actions = env.action_space.shape[0]
- noise_std = 0.2
- action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=noise_std * np.ones(n_actions))
- model = HER(‘MlpPolicy’, env, DDPG, n_sampled_goal=n_sampled_goal,
- goal_selection_strategy=’future’,
- verbose=1, buffer_size=int(1e6),
- actor_lr=1e-3, critic_lr=1e-3, action_noise=action_noise,
- gamma=0.95, batch_size=256,
- policy_kwargs=dict(layers=[256, 256, 256]))
- Load saved model
- Evaluate the agent
Stable Baselines/用户向导/示例
先用Colab Notebook在线试试吧
下述所有示例都可用Google colab Notebooks执行:
基础用法:训练、保存、载入
在下述案例,我们会在Lunar Lander(登月飞行器)环境训练、保存并载入一个DQN模型
LunarLander
需要box2d
这个Python
包。可以先apt install swig
再pip install box2d box2d-kengz
实现安装每次调用,
load
函数会从头重建模型,这个过程可能较慢。如果你用不同参数数据集评估同一模型,可以考虑用load_parameters
来替代。import gym
from stable_baselines import DQN
# Create environment
env = gym.make('LunarLander-v2')
# Instantiate the agent
model = DQN('MlpPolicy', env, learning_rate=1e-3, prioritized_replay=True, verbose=1)
# Train the agent
model.learn(total_timesteps=int(2e5))
# Save the agent
model.save("dqn_lunar")
del model # delete trained model to demonstrate loading
# Load the trained agent
model = DQN.load("dqn_lunar")
# Enjoy trained agent
obs = env.reset()
for i in range(1000):
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
多重处理:释放向量化环境的力量
import gym
import numpy as np
from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import SubprocVecEnv
from stable_baselines.common import set_global_seeds
from stable_baselines import ACKTR
def make_env(env_id, rank, seed=0):
"""
Utility function for multiprocessed env.
:param env_id: (str) the environment ID
:param num_env: (int) the number of environments you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
"""
def _init():
env = gym.make(env_id)
env.seed(seed + rank)
return env
set_global_seeds(seed)
return _init
env_id = "CartPole-v1"
num_cpu = 4 # Number of processes to use
# Create the vectorized environment
env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)])
model = ACKTR(MlpPolicy, env, verbose=1)
model.learn(total_timesteps=25000)
obs = env.reset()
for _ in range(1000):
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
使用Callback:监控训练
你可以定义一个在agent内部调用的回调函数。有助于监控训练,比如在Tensorboard(或Visdom)中呈现实时学习曲线或保存最佳agent。如果你的回调函数返回False,说明训练异常退出。
LunarLanderContinuous环境中DDPG的学习曲线
```python import os
import gym import numpy as np import matplotlib.pyplot as plt
from stable_baselines.ddpg.policies import LnMlpPolicy from stable_baselines.bench import Monitor from stable_baselines.results_plotter import load_results, ts2xy from stable_baselines import DDPG from stable_baselines.ddpg import AdaptiveParamNoiseSpec
best_mean_reward, n_steps = -np.inf, 0
def callback(_locals, _globals): “”” Callback called at each step (for DQN an others) or after n steps (see ACER or PPO2) :param _locals: (dict) :param _globals: (dict) “”” global n_steps, best_mean_reward
# Print stats every 1000 calls
if (n_steps + 1) % 1000 == 0:
# Evaluate policy training performance
x, y = ts2xy(load_results(log_dir), 'timesteps')
if len(x) > 0:
mean_reward = np.mean(y[-100:])
print(x[-1], 'timesteps')
print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(best_mean_reward, mean_reward))
# New best model, you could save the agent here
if mean_reward > best_mean_reward:
best_mean_reward = mean_reward
# Example for saving best model
print("Saving new best model")
_locals['self'].save(log_dir + 'best_model.pkl')
n_steps += 1
return True
Create log dir
log_dir = “/tmp/gym/“ os.makedirs(log_dir, exist_ok=True)
Create and wrap the environment
env = gym.make(‘LunarLanderContinuous-v2’) env = Monitor(env, log_dir, allow_early_resets=True)
Add some param noise for exploration
param_noise = AdaptiveParamNoiseSpec(initial_stddev=0.1, desired_action_stddev=0.1)
Because we use parameter noise, we should use a MlpPolicy with layer normalization
model = DDPG(LnMlpPolicy, env, param_noise=param_noise, verbose=0)
Train the agent
model.learn(total_timesteps=int(1e5), callback=callback)
- ## Atari游戏

在`Breakout`训练好的`A2C`智体

`Pong`环境
幸好有make_atari_env帮助函数可以简化Atari游戏RL智体的训练。此函数可为你完成所有预处理和多重处理。
> 在[Google Colab Notebook](<https://colab.research.google.com/drive/1iYK11yDzOOqnrXi1Sfjm1iekZr4cxLaN>)上测试
```python
from stable_baselines.common.cmd_util import make_atari_env
from stable_baselines.common.vec_env import VecFrameStack
from stable_baselines import ACER
# There already exists an environment generator
# that will make and wrap atari environments correctly.
# Here we are also multiprocessing training (num_env=4 => 4 processes)
env = make_atari_env('PongNoFrameskip-v4', num_env=4, seed=0)
# Frame-stacking with 4 frames
env = VecFrameStack(env, n_stack=4)
model = ACER('CnnPolicy', env, verbose=1)
model.learn(total_timesteps=25000)
obs = env.reset()
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
Mujoco:标准化输入特征
标准化输入特征对于RL智体的成功训练非常重要(默认情况,图像是缩放的而不是其他输入类型),比如在 Mujoco训练的时候。为此存在一个包装器,用于计算输入特征的运算均值和标准差(对奖励也可如此计算)。
我们无法为此例提供一个notebook,因为Mujoco是一个专有引擎,需要一份许可证
import gym
from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv, VecNormalize
from stable_baselines import PPO2
env = DummyVecEnv([lambda: gym.make("Reacher-v2")])
# Automatically normalize the input features
env = VecNormalize(env, norm_obs=True, norm_reward=False,
clip_obs=10.)
model = PPO2(MlpPolicy, env)
model.learn(total_timesteps=2000)
# Don't forget to save the running average when saving the agent
log_dir = "/tmp/"
model.save(log_dir + "ppo_reacher")
env.save_running_average(log_dir)
自定义策略网络
Stable baselines为图像(CNN策略)和其他输入类型(Mlp策略)提供默认策略网络。然而,你也可简单地定义一个自定义策略网络架构。(具体见自定义策略部分):
import gym
from stable_baselines.common.policies import FeedForwardPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import A2C
# Custom MLP policy of three layers of size 128 each
class CustomPolicy(FeedForwardPolicy):
def __init__(self, *args, **kwargs):
super(CustomPolicy, self).__init__(*args, **kwargs,
net_arch=[dict(pi=[128, 128, 128], vf=[128, 128, 128])],
feature_extraction="mlp")
model = A2C(CustomPolicy, 'LunarLander-v2', verbose=1)
# Train the agent
model.learn(total_timesteps=100000)
获取并调整模型参数
load_parameters
和get_parameters
函数用字典将变量名映射到Numpy数组,可通过他们获取模型参数。当你评估大量相同网络结构模型、可视化不同网络层、手动调参时,这些函数很有用。
你可以用
get_parameter_list
实现访问原始Tensorflow
变量。下述案例演示了读取参数、调参、通过实现解决CartPole-v1环境的演化策略来载入他们。通过对模型进行A2C策略梯度更新可获得参数的初始估计。
import gym
import numpy as np
from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import A2C
def mutate(params):
"""Mutate parameters by adding normal noise to them"""
return dict((name, param + np.random.normal(size=param.shape))
for name, param in params.items())
def evaluate(env, model):
"""Return mean fitness (sum of episodic rewards) for given model"""
episode_rewards = []
for _ in range(10):
reward_sum = 0
done = False
obs = env.reset()
while not done:
action, _states = model.predict(obs)
obs, reward, done, info = env.step(action)
reward_sum += reward
episode_rewards.append(reward_sum)
return np.mean(episode_rewards)
# Create env
env = gym.make('CartPole-v1')
env = DummyVecEnv([lambda: env])
# Create policy with a small network
model = A2C(MlpPolicy, env, ent_coef=0.0, learning_rate=0.1,
policy_kwargs={'net_arch': [8, ]})
# Use traditional actor-critic policy gradient updates to
# find good initial parameters
model.learn(total_timesteps=5000)
# Get the parameters as the starting point for ES
mean_params = model.get_parameters()
# Include only variables with "/pi/" (policy) or "/shared" (shared layers)
# in their name: Only these ones affect the action.
mean_params = dict((key, value) for key, value in mean_params.items()
if ("/pi/" in key or "/shared" in key))
for iteration in range(10):
# Create population of candidates and evaluate them
population = []
for population_i in range(100):
candidate = mutate(mean_params)
# Load new policy parameters to agent.
# Tell function that it should only update parameters
# we give it (policy parameters)
model.load_parameters(candidate, exact_match=False)
fitness = evaluate(env, model)
population.append((candidate, fitness))
# Take top 10% and use average over their parameters as next mean parameter
top_candidates = sorted(population, key=lambda x: x[1], reverse=True)[:10]
mean_params = dict(
(name, np.stack([top_candidate[0][name] for top_candidate in top_candidates]).mean(0))
for name in mean_params.keys()
)
mean_fitness = sum(top_candidate[1] for top_candidate in top_candidates) / 10.0
print("Iteration {:<3} Mean top fitness: {:.2f}".format(iteration, mean_fitness))
迭代策略
这个示例展示如何训练并测试一个递归策略。
迭代策略的一个当前限制是,你必须用与训练时相同数量的环境进行测试。
from stable_baselines import PPO2
# For recurrent policies, with PPO2, the number of environments run in parallel
# should be a multiple of nminibatches.
model = PPO2('MlpLstmPolicy', 'CartPole-v1', nminibatches=1, verbose=1)
model.learn(50000)
# Retrieve the env
env = model.get_env()
obs = env.reset()
# Passing state=None to the predict function means
# it is the initial state
state = None
# When using VecEnv, done is a vector
done = [False for _ in range(env.num_envs)]
for _ in range(1000):
# We need to pass the previous state and a mask for recurrent policies
# to reset lstm state when a new episode begin
action, state = model.predict(obs, state=state, mask=done)
obs, reward , done, _ = env.step(action)
# Note: with VecEnv, env.reset() is automatically called
# Show the env
env.render()
事后经验回放(HER)
在此例,我们用 @eleurent提供的Highway-Env。
parking
环境是一个以目标为环境的连续控制任务,车辆必须停在划定范围内。下述超参数是上述环境下的优化
```python import gym import highway_env import numpy as np
from stable_baselines import HER, SAC, DDPG, TD3 from stable_baselines.ddpg import NormalActionNoise
env = gym.make(“parking-v0”)
Create 4 artificial transitions per real transition
n_sampled_goal = 4
SAC hyperparams:
model = HER(‘MlpPolicy’, env, SAC, n_sampled_goal=n_sampled_goal,
goal_selection_strategy='future',
verbose=1, buffer_size=int(1e6),
learning_rate=1e-3,
gamma=0.95, batch_size=256,
policy_kwargs=dict(layers=[256, 256, 256]))
DDPG Hyperparams:
NOTE: it works even without action noise
n_actions = env.action_space.shape[0]
noise_std = 0.2
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=noise_std * np.ones(n_actions))
model = HER(‘MlpPolicy’, env, DDPG, n_sampled_goal=n_sampled_goal,
goal_selection_strategy=’future’,
verbose=1, buffer_size=int(1e6),
actor_lr=1e-3, critic_lr=1e-3, action_noise=action_noise,
gamma=0.95, batch_size=256,
policy_kwargs=dict(layers=[256, 256, 256]))
model.learn(int(2e5)) model.save(‘her_sac_highway’)
Load saved model
model = HER.load(‘her_sac_highway’, env=env)
obs = env.reset()
Evaluate the agent
episodereward = 0 for in range(100): action, _ = model.predict(obs) obs, reward, done, info = env.step(action) env.render() episode_reward += reward if done or info.get(‘is_success’, False): print(“Reward:”, episode_reward, “Success?”, info.get(‘is_success’, False)) episode_reward = 0.0 obs = env.reset()
- ## 持续学习
你还可以从一个环境的学习转移到另一个以实现连续学习(`PPO2` 先在`DemonAttack-v0`学习,然后转到`SpaceInvaders-v0`):
```python
from stable_baselines.common.cmd_util import make_atari_env
from stable_baselines import PPO2
# There already exists an environment generator
# that will make and wrap atari environments correctly
env = make_atari_env('DemonAttackNoFrameskip-v4', num_env=8, seed=0)
model = PPO2('CnnPolicy', env, verbose=1)
model.learn(total_timesteps=10000)
obs = env.reset()
for i in range(1000):
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
# The number of environments must be identical when changing environments
env = make_atari_env('SpaceInvadersNoFrameskip-v4', num_env=8, seed=0)
# change env
model.set_env(env)
model.learn(total_timesteps=10000)
obs = env.reset()
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
记录视频
记录mp4格式视频(此处使用随机智体)。
本例要求安装
ffmpeg
或avconv
import gym
from stable_baselines.common.vec_env import VecVideoRecorder, DummyVecEnv
env_id = 'CartPole-v1'
video_folder = 'logs/videos/'
video_length = 100
env = DummyVecEnv([lambda: gym.make(env_id)])
obs = env.reset()
# Record the video starting at the first step
env = VecVideoRecorder(env, video_folder,
record_video_trigger=lambda x: x == 0, video_length=video_length,
name_prefix="random-agent-{}".format(env_id))
env.reset()
for _ in range(video_length + 1):
action = [env.action_space.sample()]
obs, _, _, _ = env.step(action)
env.close()
好处:制作训练好智体的GIF图片
import imageio
import numpy as np
from stable_baselines.common.policies import MlpPolicy
from stable_baselines import A2C
model = A2C(MlpPolicy, "LunarLander-v2").learn(100000)
images = []
obs = model.env.reset()
img = model.env.render(mode='rgb_array')
for i in range(350):
images.append(img)
action, _ = model.predict(obs)
obs, _, _ ,_ = model.env.step(action)
img = model.env.render(mode='rgb_array')
imageio.mimsave('lander_a2c.gif', [np.array(img[0]) for i, img in enumerate(images) if i%2 == 0], fps=29)