计算机自学指南 - 新手入门教程

白天 夜间 首页 下载 阅读记录
  我的书签   添加书签   移除书签

STATS214 / CS229M: Machine Learning Theory

来源 csdiy.wiki 浏览 452 扫码 分享 2023-03-21 22:16:19
  • STATS214 / CS229M: Machine Learning Theory
    • 课程简介

    STATS214 / CS229M: Machine Learning Theory

    课程简介

    • 所属大学:Stanford
    • 先修要求:Machine Learning, Deep Learning, Statistics
    • 课程难度:🌟🌟🌟🌟🌟🌟
    • 课程网站:http://web.stanford.edu/class/stats214/

    经典学习理论 + 最新深度学习理论,非常硬核。授课老师之前是 Percy Liang,现在是 Tengyu Ma

    若有收获,就点个赞吧

    0 人点赞

    上一篇:
    下一篇:
    • 书签
    • 添加书签 移除书签
    • 一个仅供参考的 CS 学习规划
    • Stanford CS142: Web Applications
    • University of Helsinki: Full Stack open 2022
    • MIT Web Development Crash Course
    • 前言
    • CS188: Introduction to Artificial Intelligence
    • CS50’s Introduction to AI with Python
    • 智能计算系统
    • CS61C: Great Ideas in Computer Architecture
    • CMU CS15213: CSAPP
    • Digital Design and Computer Architecture
    • Coursera: Nand2Tetris
    • 如何使用这本书
    • 后记
    • 好书推荐
    • CMU 15-418/Stanford CS149: Parallel Computing
    • MIT6.824: Distributed System
    • CMake
    • Docker
    • GNU Make
    • Git
    • GitHub
    • LaTeX
    • Scoop
    • Vim
    • 毕业论文
    • 底层核心逻辑
    • CS162: Operating System - 操作系统
    • MIT 6.S081: 操作系统工程 - 操作系统
    • NJU OS: 操作系统设计与实现
    • MIT18.06: 线性代数 - 数学基础
    • MIT Calculus Course
    • MIT Calculus Course
    • MIT6.050J: Information theory and Entropy
    • MIT6.050J: Information theory and Entropy
    • MIT 6.042J: Mathematics for Computer Science
    • MIT 6.042J: Mathematics for Computer Science
    • UCB CS126 : Probability theory
    • UCB CS126 : Probability theory
    • UCB CS70: Discrete Math and Probability Theory
    • UCB CS70 : discrete Math and probability theory
    • The Information Theory, Patter Recognition, and Neural Networks
    • The Information Theory, Patter Recognition, and Neural Networks
    • Stanford EE364A: Convex Optimization
    • Stanford EE364A: Convex Optimization
    • MIT18.330 : Introduction to numerical analysis
    • MIT18.330 : Introduction to numerical analysis
    • CMU 15-445: Database Systems
    • CMU 15-445: Database Systems
    • Caltech CS 122: Database System Implementation
    • UCB CS186: Introduction to Database System
    • UCB CS186: Introduction to Database System
    • Stanford CS 346: Database System Implementation
    • UCB Data100: Principles and Techniques of Data Science
    • UCB Data100: Principles and Techniques of Data Science
    • Coursera: Algorithms I & II
    • Coursera: Algorithms I & II
    • CS170: Efficient Algorithms and Intractable Problems
    • CS170: Efficient Algorithms and Intractable Problems
    • CS61B: Data Structures and Algorithms
    • CS61B: Data Structures and Algorithms
    • CS189: Introduction to Machine Learning
    • CS189: Introduction to Machine Learning
    • CS229: Machine Learning
    • Coursera: Machine Learning
    • Coursera: Machine Learning
    • CMU 10-414⁄714: Deep Learning Systems
    • Machine Learning Compilation
    • CMU 10-708: Probabilistic Graphical Models
    • STATS214 / CS229M: Machine Learning Theory
    • STA 4273 Winter 2021: Minimizing Expectations
    • Columbia STAT 8201: Deep Generative Models
    • 机器学习进阶
    • CS224n: Natural Language Processing
    • CS224w: Machine Learning with Graphs
    • Coursera: Deep Learning
    • Coursera: Deep Learning
    • CS231n: CNN for Visual Recognition
    • CS285: Deep Reinforcement Learning
    • 国立台湾大学:李宏毅机器学习
    • UCB EE16A&B: Designing Information Devices and Systems I&II
    • UCB EE16A&B: Designing Information Devices and Systems I&II
    • MIT 6.007 Signals and Systems
    • MIT 6.007 Signals and Systems
    • UCB EE120: Signal and Systems
    • UCB EE120: Signal and Systems
    • UCB CS161: Computer Security
    • UCB CS161: Computer Security
    • MIT 6.858: Computer System Security
    • MIT 6.858: Computer System Security
    • Amirkabir University of Technology 1400-2: Advanced Programming Course
    • Stanford CS106B/X: Programming Abstractions in C++
    • Stanford CS106B/X: Programming Abstractions in C++
    • CS106L: Stanford C++ Programming
    • CS106L: Standard C++ Programming
    • CS110L: Safety in Systems Programming
    • CS110L: Safety in Systems Programming
    • CS50: This is CS50x
    • CS50: This is CS50x
    • CS61A: Structure and Interpretation of Computer Programs
    • CS61A: Structure and Interpretation of Computer Programs
    • Introductory C Programming Specialization
    • Introductory C Programming Specialization
    • MIT: The Missing Semester of Your CS Education
    • MIT-Missing-Semester
    • Stanford CS143: Compilers
    • Stanford CS143: Compilers
    • CMU 15-462 : COMPUTER GRAPHICS
    • CMU 15-462 : COMPUTER GRAPHICS
    • Stanford CS148
    • GAMES101
    • GAMES103
    • GAMES202
    • CS144: Computer Network
    • CS144: Computer Network
    • Computer Networking: A Top-Down Approach
    • Computer Networking: A Top-Down Approach
    • USTC Computer Networking:A Top-Down Approach
    • USTC Computer Networking:A Top-Down Approach
    • MIT 6.031: Software Construction
    • MIT 6.031: Software Construction
    • UCB CS169: software engineering
    • UCB CS169: software engineering
    暂无相关搜索结果!

      让时间为你证明

      展开/收起文章目录

      分享,让知识传承更久远

      文章二维码

      手机扫一扫,轻松掌上读

      文档下载

      请下载您需要的格式的文档,随时随地,享受汲取知识的乐趣!
      PDF文档 EPUB文档 MOBI文档

      书签列表

        阅读记录

        阅读进度: 0.00% ( 0/0 ) 重置阅读进度

          思维导图备注