关于狄克斯特拉算法,我主要是在《算法图解》一书中发现解释的并不清楚,所以找了博客学习,Google以后发现这篇英文博客讲解的不错,并且给出了C++,Java和C#下的代码实现。我将自己的理解用PPT做了下来,将图片放入,后文给出代码实现。
一、例子

图1. 问题
图2. 第一步+第二步
图3. 第三步+第四步
图4. 第五步+第六步
图5. 第七步+第八步
更新距离的方法: 例如上面现在更新到了顶点2,且顶点2对应的距离为中的12;且走过的邻点所以只需要更新3和8的邻点距离。
即与邻点8的距离更新为:
; 与邻点3的邻点距离更新为
二、代码实现
// A C++ program for Dijkstra's single source shortest path algorithm.// The program is for adjacency matrix representation of the graph.#include <limits.h>#include <stdio.h>// Number of vertices in the graph#define vertex 9// A utility function to find the vertex with minimum distance value, from// the set of vertices not yet included in shortest path tree.int minDistance(int dist[], bool sptSet[]){//Initialize min valueint min = INT_MAX, minIndex;for (int v = 0; v < vertex; v++){if (sptSet[v] == false && dist[v] <= min){min = dist[v], minIndex = v;}}return minIndex;}// A utility function to print the constructed distance arrayvoid printSolution(int dist[]){printf("Vertex \t\t Distance from Source\n");for (int i = 0; i < vertex; i++){printf("%d \t\t %d\n", i, dist[i]);}}// Function that implements Dijkstra's single source shortest path algorithm// for a graph represented using adjacency matrix representation.void dijkstra(int graph[vertex][vertex], int src){int dist[vertex]; // The output array. dist[i] will hold the shortest distance from src to ibool sptSet[vertex]; // sptSet[i] will be true if vertex i is included in shortest path tree or shortest//distance from src to i is finalized.// Initialize all distance as INFINITE and sptSet[] as false.for (int i = 0; i < vertex; i++){dist[i] = INT_MAX, sptSet[i] = false;}// Distance of source vertex from itself is always 0dist[src] = 0;// Find shortest path for all verticesfor (int count = 0; count < vertex - 1; count++){// Pick the minimum distance vertex from the set of vertices not yet processed. u is always equal to// src in the first iteration.int u = minDistance(dist, sptSet);// Mark the picked vertex as processedsptSet[u] = true;// Update dist value of the adjacent vertices of the picked vertexfor (int v = 0; v < vertex; v++){// Update dist[v] only if is not in sptSet, there is an edge fron u to v, and total weight of path// from src to v through u is smaller than current value of dist[v]if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]){dist[v] = dist[u] + graph[u][v];}}}// print the constructed distance arrayprintSolution(dist);}// driver program to test above functionint main(){/* Let us create the example graph discussed above */int graph[vertex][vertex] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },{ 4, 0, 8, 0, 0, 0, 0, 11, 0 },{ 0, 8, 0, 7, 0, 4, 0, 0, 2 },{ 0, 0, 7, 0, 9, 14, 0, 0, 0 },{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },{ 0, 0, 4, 14, 10, 0, 2, 0, 0 },{ 0, 0, 0, 0, 0, 2, 0, 1, 6 },{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },{ 0, 0, 2, 0, 0, 0, 6, 7, 0 } };dijkstra(graph, 0);return 0;}
Vertex Distance from Source 0 0
1 4
2 12
3 19
4 21
5 11
6 9
7 8
8 14
可以看到和我们上面得到的结果一致。

