Debezium SQL Server Source Connector+Kafka+Spark+MySQL 实时数据处理
写在前面
前段时间在实时获取SQLServer数据库变化时候,整个过程可谓是坎坷。然后就想在这里记录一下。
本文的技术栈: Debezium SQL Server Source Connector+Kafka+Spark+MySQL
ps:后面应该会将数据放到Kudu上。
然后主要记录一下,整个组件使用和组件对接过程中一些注意点和坑。
注意如果使用confluent端口9092,8083
开始吧
在处理实时数据时,需要即时地获得数据库表中数据的变化,然后将数据变化发送到Kafka中。不同的数据库有不同的组件进行处理。
常见的MySQL数据库,就有比较多的支持 canal ,maxwell等,他们都是类似 MySQL binlog 增量订阅&消费组件这种模式 。那么关于微软的SQLServer数据库,好像整个开源社区 支持就没有那么好了。
1.选择Connector
Debezium的SQL Server连接器是一种源连接器,可以获取SQL Server数据库中现有数据的快照,然后监视和记录对该数据的所有后续行级更改。每个表的所有事件都记录在单独的Kafka Topic中,应用程序和服务可以轻松使用它们。然后本连接器也是基于MSSQL的change data capture实现。
2.安装Connector
我参照官方文档安装是没有问题的。
2.1 Installing Confluent Hub Client
Confluent Hub客户端本地安装为Confluent Platform的一部分,位于/ bin目录中。
Linux
Download and unzip the Confluent Hub tarball.
[root@hadoop001 softs]# ll confluent-hub-client-latest.tar-rw-r--r--. 1 root root 6909785 9月 24 10:02 confluent-hub-client-latest.tar[root@hadoop001 softs]# tar confluent-hub-client-latest.tar -C ../app/conn/[root@hadoop001 softs]# ll ../app/conn/总用量 6748drwxr-xr-x. 2 root root 27 9月 24 10:43 bin-rw-r--r--. 1 root root 6909785 9月 24 10:02 confluent-hub-client-latest.tardrwxr-xr-x. 3 root root 34 9月 24 10:05 etcdrwxr-xr-x. 2 root root 6 9月 24 10:08 kafka-mssqldrwxr-xr-x. 4 root root 29 9月 24 10:05 share[root@hadoop001 softs]#
配置bin目录到系统环境变量中
export CONN_HOME=/root/app/connexport PATH=$CONN_HOME/bin:$PATH
确认是否安装成功
[root@hadoop001 ~]# source /etc/profile[root@hadoop001 ~]# confluent-hubusage: confluent-hub <command> [ <args> ]Commands are:help Display help informationinstall install a component from either Confluent Hub or from a local fileSee 'confluent-hub help <command>' for more information on a specific command.[root@hadoop001 ~]#
2.2 Install the SQL Server Connector 使用命令confluent-hub
[root@hadoop001 ~]# confluent-hub install debezium/debezium-connector-sqlserver:0.9.4The component can be installed in any of the following Confluent Platform installations:1. / (installed rpm/deb package)2. /root/app/conn (where this tool is installed)Choose one of these to continue the installation (1-2): 2Do you want to install this into /root/app/conn/share/confluent-hub-components? (yN) nSpecify installation directory: /root/app/conn/share/java/confluent-hub-clientComponent's license:Apache 2.0https://github.com/debezium/debezium/blob/master/LICENSE.txtI agree to the software license agreement (yN) yYou are about to install 'debezium-connector-sqlserver' from Debezium Community, as published on Confluent Hub.Do you want to continue? (yN) y
注意:Specify installation directory:这个安装目录最好是你刚才的confluent-hub 目录下的 /share/java/confluent-hub-client 这个目录下。其余的基本操作就好。
3.配置Connector
首先需要对Connector进行配置,配置文件位于 $KAFKA_HOME/config/connect-distributed.properties:
# These are defaults. This file just demonstrates how to override some settings.# kafka集群地址,我这里是单节点多Broker模式bootstrap.servers=haoop001:9093,hadoop001:9094,hadoop001:9095# Connector集群的名称,同一集群内的Connector需要保持此group.id一致group.id=connect-cluster# The converters specify the format of data in Kafka and how to translate it into Connect data. Every Connect user will# need to configure these based on the format they want their data in when loaded from or stored into Kafka# 存储到kafka的数据格式key.converter=org.apache.kafka.connect.json.JsonConvertervalue.converter.schemas.enable=false# The internal converter used for offsets and config data is configurable and must be specified, but most users will# 内部转换器的格式,针对offsets、config和status,一般不需要修改internal.key.converter=org.apache.kafka.connect.json.JsonConverterinternal.value.converter=org.apache.kafka.connect.json.JsonConverterinternal.key.converter.schemas.enable=falseinternal.value.converter.schemas.enable=false# Topic to use for storing offsets. This topic should have many partitions and be replicated.# 用于保存offsets的topic,应该有多个partitions,并且拥有副本(replication),主要根据你的集群实际情况来# Kafka Connect会自动创建这个topic,但是你可以根据需要自行创建offset.storage.topic=connect-offsets-2offset.storage.replication.factor=3offset.storage.partitions=1# 保存connector和task的配置,应该只有1个partition,并且有3个副本config.storage.topic=connect-configs-2config.storage.replication.factor=3# 用于保存状态,可以拥有多个partition和replication# Topic to use for storing statuses. This topic can have multiple partitions and should be replicated.status.storage.topic=connect-status-2status.storage.replication.factor=3status.storage.partitions=1offset.storage.file.filename=/root/data/kafka-logs/offset-storage-file# Flush much faster than normal, which is useful for testing/debuggingoffset.flush.interval.ms=10000# REST端口号rest.port=18083# 保存connectors的路径#plugin.path=/root/app/kafka_2.11-0.10.1.1/connectorsplugin.path=/root/app/conn/share/java/confluent-hub-client
4.创建kafka Topic
我这里是单节点多Broker模式的Kafka,那么创建Topic可以如下:
kafka-topics.sh --zookeeper hadoop001:2181 --create --topic connect-offsets-2 --replication-factor 3 --partitions 1kafka-topics.sh --zookeeper hadoop001:2181 --create --topic connect-configs-2 --replication-factor 3 --partitions 1kafka-topics.sh --zookeeper hadoop001:2181 --create --topic connect-status-2 --replication-factor 3 --partitions 1
查看状态 <很重要>
[root@hadoop001 ~]# kafka-topics.sh --describe --zookeeper hadoop001:2181 --topic connect-offsets-2Topic:connect-offsets-2 PartitionCount:1 ReplicationFactor:3 Configs:Topic: connect-offsets-2 Partition: 0 Leader: 3 Replicas: 3,1,2 Isr: 3,1,2[root@hadoop001 ~]# kafka-topics.sh --describe --zookeeper hadoop001:2181 --topic connect-configs-2Topic:connect-configs-2 PartitionCount:1 ReplicationFactor:3 Configs:Topic: connect-configs-2 Partition: 0 Leader: 1 Replicas: 1,2,3 Isr: 1,2,3[root@hadoop001 ~]# kafka-topics.sh --describe --zookeeper hadoop001:2181 --topic connect-status-2Topic:connect-status-2 PartitionCount:1 ReplicationFactor:3 Configs:Topic: connect-status-2 Partition: 0 Leader: 3 Replicas: 3,1,2 Isr: 3,1,2[root@hadoop001 ~]#
5.开启SqlServer Change Data Capture(CDC)更改数据捕获
变更数据捕获用于捕获应用到 SQL Server 表中的插入、更新和删除活动,并以易于使用的关系格式提供这些变更的详细信息。变更数据捕获所使用的更改表中包含镜像所跟踪源表列结构的列,同时还包含了解所发生的变更所需的元数据。变更数据捕获提供有关对表和数据库所做的 DML 更改的信息。通过使用变更数据捕获,您无需使用费用高昂的方法,如用户触发器、时间戳列和联接查询等。
数据变更历史表会随着业务的持续,变得很大,所以默认情况下,变更数据历史会在本地数据库保留3天(可以通过视图msdb.dbo.cdc_jobs的字段retention来查询,当然也可以更改对应的表来修改保留时间),每天会通过SqlServer后台代理任务,每天晚上2点定时删除。所以推荐定期的将变更数据转移到数据仓库中。
以下命令基本就够用了
--查看数据库是否起用CDCGOSELECT [name], database_id, is_cdc_enabledFROM sys.databasesGO--数据库起用CDCUSE test1GOEXEC sys.sp_cdc_enable_dbGO--关闭数据库CDCUSE test1goexec sys.sp_cdc_disable_dbgo--查看表是否启用CDCUSE test1GOSELECT [name], is_tracked_by_cdcFROM sys.tablesGO--启用表的CDC,前提是数据库启用USE Demo01GOEXEC sys.sp_cdc_enable_table@source_schema = 'dbo',@source_name = 'user',@capture_instance='user',@role_name = NULLGO--关闭表上的CDC功能USE test1GOEXEC sys.sp_cdc_disable_table@source_schema = 'dbo',@source_name = 'user',@capture_instance='user'GO--可能不记得或者不知道开启了什么表的捕获,返回所有表的变更捕获配置信息EXECUTE sys.sp_cdc_help_change_data_capture;GO--查看对某个实例(即表)的哪些列做了捕获监控:EXEC sys.sp_cdc_get_captured_columns@capture_instance = 'user'--查找配置信息 -retention 变更数据保留的分钟数SELECT * FROM test1.dbo.cdc_jobs--更改数据保留时间为分钟EXECUTE sys.sp_cdc_change_job@job_type = N'cleanup',@retention=1440GO--停止捕获作业exec sys.sp_cdc_stop_job N'capture'go--启动捕获作业exec sys.sp_cdc_start_job N'capture'go
6.运行Connector
怎么运行呢?参照
[root@hadoop001 bin]# pwd/root/app/kafka_2.11-1.1.1/bin[root@hadoop001 bin]# ./connect-distributed.shUSAGE: ./connect-distributed.sh [-daemon] connect-distributed.properties[root@hadoop001 bin]#[root@hadoop001 bin]# ./connect-distributed.sh ../config/connect-distributed.properties... 这里就会有大量日志输出
验证:
[root@hadoop001 ~]# netstat -tanp |grep 18083tcp6 0 0 :::18083 :::* LISTEN 29436/java[root@hadoop001 ~]#
6.1 获取Worker的信息
ps:可能你需要安装jq这个软件: yum -y install jq ,当然可以在浏览器上打开
[root@hadoop001 ~]# curl -s hadoop001:18083 | jq{"version": "1.1.1","commit": "8e07427ffb493498","kafka_cluster_id": "dmUSlNNLQ9OyJiK-bUc6Tw"}[root@hadoop001 ~]#
6.2 获取Worker上已经安装的Connector
[root@hadoop001 ~]# curl -s hadoop001:18083/connector-plugins | jq[{"class": "io.debezium.connector.sqlserver.SqlServerConnector","type": "source","version": "0.9.5.Final"},{"class": "org.apache.kafka.connect.file.FileStreamSinkConnector","type": "sink","version": "1.1.1"},{"class": "org.apache.kafka.connect.file.FileStreamSourceConnector","type": "source","version": "1.1.1"}][root@hadoop001 ~]#
可以看见io.debezium.connector.sqlserver.SqlServerConnector 这个是我们自己刚才安装的连接器
6.3 列出当前运行的connector(task)
[root@hadoop001 ~]# curl -s hadoop001:18083/connectors | jq[][root@hadoop001 ~]#
6.4 提交Connector用户配置 《重点》
当提交用户配置时,就会启动一个Connector Task,
Connector Task执行实际的作业。
用户配置是一个Json文件,同样通过REST API提交:
curl -s -X POST -H "Content-Type: application/json" --data '{"name": "connector-mssql-online-1","config": {"connector.class" : "io.debezium.connector.sqlserver.SqlServerConnector","tasks.max" : "1","database.server.name" : "test1","database.hostname" : "hadoop001","database.port" : "1433","database.user" : "sa","database.password" : "xxx","database.dbname" : "test1","database.history.kafka.bootstrap.servers" : "hadoop001:9093","database.history.kafka.topic": "test1.t201909262.bak"}}' http://hadoop001:18083/connectors
马上查看connector当前状态,确保状态是RUNNING
[root@hadoop001 ~]# curl -s hadoop001:18083/connectors/connector-mssql-online-1/status | jq{"name": "connector-mssql-online-1","connector": {"state": "RUNNING","worker_id": "xxx:18083"},"tasks": [{"state": "RUNNING","id": 0,"worker_id": "xxx:18083"}],"type": "source"}[root@hadoop001 ~]#
此时查看Kafka Topic
[root@hadoop001 ~]# kafka-topics.sh --list --zookeeper hadoop001:2181__consumer_offsetsconnect-configs-2connect-offsets-2connect-status-2#自动生成的Topic, 记录表结构的变化,生成规则:你的connect中自定义的test1.t201909262.bak[root@hadoop001 ~]#
再次列出运行的connector(task)
[root@hadoop001 ~]# curl -s hadoop001:18083/connectors | jq["connector-mssql-online-1"][root@hadoop001 ~]#
6.5 查看connector的信息
[root@hadoop001 ~]# curl -s hadoop001:18083/connectors/connector-mssql-online-1 | jq{"name": "connector-mssql-online-1","config": {"connector.class": "io.debezium.connector.sqlserver.SqlServerConnector","database.user": "sa","database.dbname": "test1","tasks.max": "1","database.hostname": "hadoop001","database.password": "xxx","database.history.kafka.bootstrap.servers": "hadoop001:9093","database.history.kafka.topic": "test1.t201909262.bak","name": "connector-mssql-online-1","database.server.name": "test1","database.port": "1433"},"tasks": [{"connector": "connector-mssql-online-1","task": 0}],"type": "source"}[root@hadoop001 ~]#
6.6 查看connector下运行的task信息
[root@hadoop001 ~]# curl -s hadoop001:18083/connectors/connector-mssql-online-1/tasks | jq[{"id": {"connector": "connector-mssql-online-1","task": 0},"config": {"connector.class": "io.debezium.connector.sqlserver.SqlServerConnector","database.user": "sa","database.dbname": "test1","task.class": "io.debezium.connector.sqlserver.SqlServerConnectorTask","tasks.max": "1","database.hostname": "hadoop001","database.password": "xxx","database.history.kafka.bootstrap.servers": "hadoop001:9093","database.history.kafka.topic": "test1.t201909262.bak","name": "connector-mssql-online-1","database.server.name": "test1","database.port": "1433"}}][root@hadoop001 ~]#
task的配置信息继承自connector的配置
6.7 暂停/重启/删除 Connector
# curl -s -X PUT hadoop001:18083/connectors/connector-mssql-online-1/pause# curl -s -X PUT hadoop001:18083/connectors/connector-mssql-online-1/resume# curl -s -X DELETE hadoop001:18083/connectors/connector-mssql-online-1
7.从Kafka中读取变动数据
# 记录表结构的变化,生成规则:你的connect中自定义的kafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.t201909262.bak --from-beginning# 记录数据的变化,生成规则:test1.dbo.t201909262kafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.dbo.t201909262 --from-beginning
这里就是:
kafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.dbo.t201909262 --from-beginningkafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.dbo.t201909262
8. 对表进行 DML语句 操作
新增数据:
然后kafka控制台也就会马上打出日志
spark 对接kafka 10s一个批次
然后就会将这个新增的数据插入到MySQL中去
具体的处理逻辑后面再花时间来记录一下
修改和删除也是OK的,就不演示了
有任何问题,欢迎留言一起交流~~
更多好文:https://blog.csdn.net/liuge36
参考文章:
https://docs.confluent.io/current/connect/debezium-connect-sqlserver/index.html#sqlserver-source-connector
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server?view=sql-server-2017
https://blog.csdn.net/qq_19518987/article/details/89329464
http://www.tracefact.net/tech/087.html
分类: 大数据学习
