为了在Scala和Java API之间保持相当大的一致性,在批处理和流式传输的标准API中省略了一些允许Scala高级表达性的函数。
如果您想享受完整的Scala体验,可以选择选择关联通过隐式转换增强Scala API的扩展。
要使用所有可用的扩展,您只需import为DataSet API 添加一个简单的扩展
import org.apache.flink.api.scala.extensions._
或DataStream API
import org.apache.flink.streaming.api.scala.extensions._
或者,您可以导入单个扩展名a-là-carte以仅使用您喜欢的扩展名。
接受部分函数
通常,DataSet和DataStream API都不接受匿名模式匹配函数来解构元组,案例类或集合,如下所示:
val data: DataSet[(Int, String, Double)] = // [...] data.map {case (id, name, temperature) => // [...]// The previous line causes the following compilation error:// "The argument types of an anonymous function must be fully known. (SLS 8.5)" }
此扩展在DataSet和DataStream Scala API中引入了新方法,这些方法在扩展API中具有一对一的对应关系。这些委托方法确实支持匿名模式匹配函数。
DataSet API
方法:mapWith
原生:map(DataSet)
DEMO:
data.mapWith {case (_, value) => value.toString}
方法:mapPartitionWith
原生:mapPartition(DataSet)
DEMO:
data.mapPartitionWith {case head #:: _ => head}
方法:flatMapWith
原生:flatMap(DataSet)
DEMO:
data.flatMapWith {case (_, name, visitTimes) => visitTimes.map(name -> _)}
方法:filterWith
原生:filter(DataSet)
DEMO:
data.filterWith {case Train(_, isOnTime) => isOnTime}
方法:reduceWith
原生:reduce(DataSet,GroupedDataSet)
DEMO:
data.reduceWith {case ((_, amount1), (_, amount2)) => amount1 + amount2}
方法:reduceGroupWith
原生:reduceGroup(GroupedDataSet)
DEMO:
data.reduceGroupWith {case id #:: value #:: _ => id -> value}
方法:groupingBy
原生:groupBy(DataSet)
DEMO:
data.groupingBy {case (id, _, _) => id}
方法:sortGroupWith
原生:sortGroup(GroupedDataSet)
DEMO:
grouped.sortGroupWith(Order.ASCENDING) {case House(_, value) => value}
方法:combineGroupWith
原生:combineGroup(GroupedDataSet)
DEMO:
grouped.combineGroupWith {case header #:: amounts => amounts.sum}
方法:projecting
原生:apply(JoinDataSet,CrossDataSet)
DEMO:
data1.join(data2).whereClause(case (pk, _) => pk).isEqualTo(case (_, fk) => fk).projecting {case ((pk, tx), (products, fk)) => tx -> products}data1.cross(data2).projecting {case ((a, _), (_, b) => a -> b}
方法:projecting
原生:apply(CoGroupDataSet)
DEMO:
data1.coGroup(data2).whereClause(case (pk, _) => pk).isEqualTo(case (_, fk) => fk).projecting {case (head1 #:: _, head2 #:: _) => head1 -> head2}}
DataStream API
方法:mapWith
原生:map(DataStream)
DEMO:
data.mapWith {case (_, value) => value.toString}
方法:mapPartitionWith
原生:mapPartition(DataStream)
DEMO:
data.mapPartitionWith {case head #:: _ => head}
方法:flatMapWith
原生:flatMap(DataStream)
DEMO:
data.flatMapWith {case (_, name, visits) => visits.map(name -> _)}
方法:filterWith
原生:filter(DataStream)
DEMO:
data.filterWith {case Train(_, isOnTime) => isOnTime}
方法:keyingBy
原生:keyBy(DataStream)
DEMO:
data.keyingBy {case (id, _, _) => id}
方法:mapWith
原生:map(ConnectedDataStream)
DEMO:
data.mapWith(map1 = case (_, value) => value.toString,map2 = case (_, _, value, _) => value + 1)
方法:flatMapWith
原生:flatMap(ConnectedDataStream)
DEMO:
data.flatMapWith(flatMap1 = case (_, json) => parse(json),flatMap2 = case (_, _, json, _) => parse(json))
方法:keyingBy
原生:keyBy(ConnectedDataStream)
DEMO:
data.keyingBy(key1 = case (_, timestamp) => timestamp,key2 = case (id, _, _) => id)
方法:reduceWith
原生:reduce(KeyedStream,WindowedStream)
DEMO:
data.reduceWith {case ((_, sum1), (_, sum2) => sum1 + sum2}
方法:foldWith
原生:fold(KeyedStream,WindowedStream)
DEMO:
data.foldWith(User(bought = 0)) {case (User(b), (_, items)) => User(b + items.size)}
方法:applyWith
原生:apply(WindowedStream)
DEMO:
data.applyWith(0)(foldFunction = case (sum, amount) => sum + amountwindowFunction = case (k, w, sum) => // [...] )
方法:projecting
原生:apply(JoinedStream)
DEMO:
data1.join(data2).whereClause(case (pk, _) => pk).isEqualTo(case (_, fk) => fk).projecting {case ((pk, tx), (products, fk)) => tx -> products}
有关每种方法的语义的更多信息,请参阅 DataSet和DataStream API文档。
要仅使用此扩展程序,您可以添加以下内容import:
import org.apache.flink.api.scala.extensions.acceptPartialFunctions
对于DataSet扩展和
import org.apache.flink.streaming.api.scala.extensions.acceptPartialFunctions
以下代码段显示了如何一起使用这些扩展方法的最小示例(使用DataSet API):
object Main {import org.apache.flink.api.scala.extensions._case class Point(x: Double, y: Double)def main(args: Array[String]): Unit = {val env = ExecutionEnvironment.getExecutionEnvironmentval ds = env.fromElements(Point(1, 2), Point(3, 4), Point(5, 6))ds.filterWith {case Point(x, _) => x > 1}.reduceWith {case (Point(x1, y1), (Point(x2, y2))) => Point(x1 + y1, x2 + y2)}.mapWith {case Point(x, y) => (x, y)}.flatMapWith {case (x, y) => Seq("x" -> x, "y" -> y)}.groupingBy {case (id, value) => id}}}
