Parallel Algorithms
.. include:: subst.rst
Element-wise expression evalution (“map”)
.. module:: pyopencl.elementwise
Evaluating involved expressions on :class:pyopencl.array.Array instances by
using overloaded operators can be somewhat inefficient, because a new temporary
is created for each intermediate result. The functionality in the module
:mod:pyopencl.elementwise contains tools to help generate kernels that
evaluate multi-stage expressions on one or several operands in a single pass.
.. autoclass:: ElementwiseKernel(context, arguments, operation, name=”kernel”, preamble=””, options=[])
.. method:: __call__(*args, wait_for=None)Invoke the generated scalar kernel. The arguments may either be scalars or:class:`GPUArray` instances.|std-enqueue-blurb|
Here’s a usage example::
.. literalinclude:: ../examples/demo_elementwise.py
(You can find this example as
:download:examples/demo_elementwise.py <../examples/demo_elementwise.py>
in the PyOpenCL distribution.)
.. _custom-reductions:
Sums and counts (“reduce”)
.. module:: pyopencl.reduction
.. class:: ReductionKernel(ctx, dtype_out, neutral, reduce_expr, map_expr=None, arguments=None, name=”reduce_kernel”, options=[], preamble=””)
Generate a kernel that takes a number of scalar or vector *arguments*(at least one vector argument), performs the *map_expr* on each entry ofthe vector argument and then the *reduce_expr* on the outcome of that.*neutral* serves as an initial value. *preamble* offers the possibilityto add preprocessor directives and other code (such as helper functions)to be added before the actual reduction kernel code.Vectors in *map_expr* should be indexed by the variable *i*. *reduce_expr*uses the formal values "a" and "b" to indicate two operands of a binaryreduction operation. If you do not specify a *map_expr*, ``in[i]`` isautomatically assumed and treated as the only one input argument.*dtype_out* specifies the :class:`numpy.dtype` in which the reduction isperformed and in which the result is returned. *neutral* is specified asfloat or integer formatted as string. *reduce_expr* and *map_expr* arespecified as string formatted operations and *arguments* is specified as astring formatted as a C argument list. *name* specifies the name as whichthe kernel is compiled. *options* are passed unmodified to:meth:`pyopencl.Program.build`. *preamble* specifies a string of code thatis inserted before the actual kernels... method:: __call__(*args, queue=None, wait_for=None, return_event=False, out=None)|explain-waitfor|With *out* the resulting single-entry :class:`pyopencl.array.Array` canbe specified. Because offsets are supported one can store resultsanywhere (e.g. ``out=a[3]``).:return: the resulting scalar as a single-entry :class:`pyopencl.array.Array`if *return_event* is *False*, otherwise a tuple ``(scalar_array, event)``... note::The returned :class:`pyopencl.Event` corresponds only to part of theexecution of the reduction. It is not suitable for profiling... versionadded:: 2011.1.. versionchanged:: 2014.2Added *out* parameter.
Here’s a usage example::
a = pyopencl.array.arange(queue, 400, dtype=numpy.float32)b = pyopencl.array.arange(queue, 400, dtype=numpy.float32)krnl = ReductionKernel(ctx, numpy.float32, neutral="0",reduce_expr="a+b", map_expr="x[i]*y[i]",arguments="__global float *x, __global float *y")my_dot_prod = krnl(a, b).get()
.. _custom-scan:
Prefix Sums (“scan”)
.. module:: pyopencl.scan
.. |scan_extra_args| replace:: a list of tuples (name, value) specifying
extra arguments to pass to the scan procedure. For version 2013.1,
value must be a of a :mod:numpy sized scalar type. As of version 2013.2,
value may also be a :class:pyopencl.array.Array.
.. |preamble| replace:: A snippet of C that is inserted into the compiled kernel
before the actual kernel function. May be used for, e.g. type definitions
or include statements.
A prefix sum is a running sum of an array, as provided by
e.g. :mod:numpy.cumsum::
>>> import numpy as np>>> a = [1,1,1,1,1,2,2,2,2,2]>>> np.cumsum(a)array([ 1, 2, 3, 4, 5, 7, 9, 11, 13, 15])
This is a very simple example of what a scan can do. It turns out that scans are significantly more versatile. They are a basic building block of many non-trivial parallel algorithms. Many of the operations enabled by scans seem difficult to parallelize because of loop-carried dependencies.
.. seealso::
`Prefix sums and their applications <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.6230>`_, by Guy Blelloch.This article gives an overview of some surprising applications of scans.:ref:`predefined-scans`These operations built into PyOpenCL are realized using :class:`GenericScanKernel`.
Usage Example ^^^^^^^^^^^^^
This example illustrates the implementation of a simplified version of
:func:pyopencl.algorithm.copy_if,
which copies integers from an array into the (variable-size) output if they are
greater than 300::
knl = GenericScanKernel(ctx, np.int32,arguments="__global int *ary, __global int *out",input_expr="(ary[i] > 300) ? 1 : 0",scan_expr="a+b", neutral="0",output_statement="""if (prev_item != item) out[item-1] = ary[i];""")out = a.copy()knl(a, out)a_host = a.get()out_host = a_host[a_host > 300]assert (out_host == out.get()[:len(out_host)]).all()
The value being scanned over is a number of flags indicating whether each array element is greater than 300. These flags are computed by input_expr. The prefix sum over this array gives a running count of array items greater than
- The output_statement the compares
prev_item(the previous item’s scan result, i.e. index) toitem(the current item’s scan result, i.e. index). If they differ, i.e. if the predicate was satisfied at this position, then the item is stored in the output at the computed index.
This example does not make use of the following advanced features also available in PyOpenCL:
Segmented scans
Access to the previous item in input_expr (e.g. for comparisons) See the
implementation <https://github.com/inducer/pyopencl/blob/master/pyopencl/scan.py#L1353>_ of :func:uniquefor an example.
Making Custom Scan Kernels ^^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionadded:: 2013.1
.. autoclass:: GenericScanKernel
.. method:: __call__(*args, allocator=None, queue=None, size=None, wait_for=None)*queue* and *allocator* default to the ones provided on the first:class:`pyopencl.array.Array` in *args*. *size* may specify thelength of the scan to be carried out. If not given, this lengthis inferred from the first array argument passed.|std-enqueue-blurb|.. note::The returned :class:`pyopencl.Event` corresponds only to part of theexecution of the scan. It is not suitable for profiling.
Debugging aids
~~~~~~
.. class:: GenericDebugScanKernel
Performs the same function and has the same interface as:class:`GenericScanKernel`, but uses a dead-simple, sequential scan. Worksbest on CPU platforms, and helps isolate bugs in scans by removing thepotential for issues originating in parallel execution.
.. _predefined-scans:
Simple / Legacy Interface ^^^^^^^^^^^^^^^^^^^^^^^^^
.. class:: ExclusiveScanKernel(ctx, dtype, scan_expr, neutral, name_prefix=”scan”, options=[], preamble=””, devices=None)
Generates a kernel that can compute a `prefix sum <https://secure.wikimedia.org/wikipedia/en/wiki/Prefix_sum>`_using any associative operation given as *scan_expr*.*scan_expr* uses the formal values "a" and "b" to indicate two operands ofan associative binary operation. *neutral* is the neutral elementof *scan_expr*, obeying *scan_expr(a, neutral) == a*.*dtype* specifies the type of the arrays being operated on.*name_prefix* is used for kernel names to ensure recognizabilityin profiles and logs. *options* is a list of compiler options to usewhen building. *preamble* specifies a string of code that isinserted before the actual kernels. *devices* may be used to restrictthe set of devices on which the kernel is meant to run. (defaultsto all devices in the context *ctx*... method:: __call__(self, input_ary, output_ary=None, allocator=None, queue=None)
.. class:: InclusiveScanKernel(ctx, dtype, scan_expr, neutral=None, name_prefix=”scan”, options=[], preamble=””, devices=None)
Works like :class:`ExclusiveScanKernel`... versionchanged:: 2013.1*neutral* is now always required.
For the array [1,2,3], inclusive scan results in [1,3,6], and exclusive
scan results in [0,1,3].
Here’s a usage example::
knl = InclusiveScanKernel(context, np.int32, "a+b")n = 2**20-2**18+5host_data = np.random.randint(0, 10, n).astype(np.int32)dev_data = cl_array.to_device(queue, host_data)knl(dev_data)assert (dev_data.get() == np.cumsum(host_data, axis=0)).all()
Predicated copies (“partition”, “unique”, …)
.. module:: pyopencl.algorithm
.. autofunction:: copy_if
.. autofunction:: remove_if
.. autofunction:: partition
.. autofunction:: unique
Sorting (radix sort)
.. autoclass:: RadixSort
.. automethod:: __call__
Building many variable-size lists
.. autoclass:: ListOfListsBuilder
Bitonic Sort
.. module:: pyopencl.bitonic_sort
.. autoclass:: BitonicSort
